4,487 research outputs found
Mass accretion rates from multi-band photometry in the Carina Nebula: the case of Trumpler 14
We present a study of the mass accretion rates of pre-Main Sequence (PMS)
stars in the cluster Trumpler 14 (Tr14) in the Carina Nebula. Using optical
multi-band photometry we were able to identify 356 PMS stars showing H-alpha
excess emission with equivalent width EW(H-alpha)>20\AA. We interpret this
observational feature as indication that these objects are still actively
accreting gas from their circumstellar medium. From a comparison of the HR
diagram with PMS evolutionary models we derive ages and masses of the PMS
stars. We find that most of the PMS objects are younger than 10 Myr with a
median age of ~3 Myr. Surprisingly, we also find that ~20% of the mass
accreting objects are older than 10 Myr. For each PMS star in Trumpler 14 we
determine the mass accretion rate () and discuss its dependence
on mass and age. We finally combine the optical photometry with near-IR
observations to build the spectral energy distribution (SED) for each PMS star
in Tr14. The analysis of the SEDs suggests the presence of transitional discs
in which a large amount of gas is still present and sustains accretion onto the
PMS object at ages older than 10 Myr. Our results, discussed in light of recent
recent discoveries with Herschel of transitional discs containing a massive gas
component around the relatively old PSM stars TW Hydrae, 49 Ceti, and HD 95086,
support a new scenario in which old and evolved debris discs still host a
significant amount of gas.Comment: 12 pages, 13 figures, accepted for publication on A&
Mass accretion rates from multiband photometry in the Carina Nebula: The case of Trumpler 14
open8siWe present a study of the mass accretion rates of pre-main sequence (PMS) stars in the cluster Trumpler 14 (Tr 14) in the Carina Nebula. Using optical multiband photometry we were able to identify 356 PMS stars showing Hα excess emission with equivalent width EW(Hα) > 20 Å. We interpret this observational feature as an indication that these objects are still actively accreting gas from their circumstellar medium. From a comparison of the HR diagram with PMS evolutionary models we derive ages and masses of the PMS stars. We find that most of the PMS objects are younger than 10 Myr with a median age of ~3 Myr. Surprisingly, we also find that ~20% of the mass accreting objects are older than 10 Myr. For each PMS star in Trumpler 14 we determine the mass accretion rate (Ṁacc) and discuss its dependence on mass and age. We finally combine the optical photometry with near-IR observations to build the spectral energy distribution (SED) for each PMS star in Tr 14. The analysis of the SEDs suggests the presence of transitional discs in which a large amount of gas is still present and sustains accretion onto the PMS object at ages older than 10 Myr. Our results, discussed in light of recent recent discoveries with Herschel of transitional discs containing a massive gas component around the relatively old PMS stars TW Hydrae, 49 Ceti, and HD 95086, support a new scenario n which old and evolved debris discs still host a significant amount of gas.openBeccari, G.; De Marchi, G.; Panagia, N.; Valenti, E.; Carraro, G.; Romaniello, M.; Zoccali, M.; Weidner, C.Beccari, G.; De Marchi, G.; Panagia, N.; Valenti, E.; Carraro, Giovanni; Romaniello, M.; Zoccali, M.; Weidner, C
A discontinuity in the low-mass initial mass function
The origin of brown dwarfs (BDs) is still an unsolved mystery. While the
standard model describes the formation of BDs and stars in a similar way recent
data on the multiplicity properties of stars and BDs show them to have
different binary distribution functions. Here we show that proper treatment of
these uncovers a discontinuity of the multiplicity-corrected mass distribution
in the very-low-mass star (VLMS) and BD mass regime. A continuous IMF can be
discarded with extremely high confidence. This suggests that VLMSs and BDs on
the one hand, and stars on the other, are two correlated but disjoint
populations with different dynamical histories. The analysis presented here
suggests that about one BD forms per five stars and that the BD-star binary
fraction is about 2%-3% among stellar systems.Comment: 14 pages, 11 figures, uses emulateapj.cls. Minor corrections and 1
reference added after being accepted by the Ap
Attention modulates visual size adaptation.
The current study determined in healthy subjects (n = 16) whether size adaptation occurs at early, i.e., preattentive, levels of processing or whether higher cognitive processes such as attention can modulate the illusion. To investigate this issue, bottom-up stimulation was kept constant across conditions by using a single adaptation display containing both small and large adapter stimuli. Subjects' attention was directed to either the large or small adapter stimulus by means of a luminance detection task. When attention was directed toward the small as compared to the large adapter, the perceived size of the subsequent target was significantly increased. Data suggest that different size adaptation effects can be induced by one and the same stimulus depending on the current allocation of attention. This indicates that size adaptation is subject to attentional modulation. These findings are in line with previous research showing that transient as well as sustained attention modulates visual features, such as contrast sensitivity and spatial frequency, and influences adaptation in other contexts, such as motion adaptation (Alais & Blake, 1999; Lankheet & Verstraten, 1995). Based on a recently suggested model (Pooresmaeili, Arrighi, Biagi, & Morrone, 2013), according to which perceptual adaptation is based on local excitation and inhibition in V1, we conclude that guiding attention can boost these local processes in one or the other direction by increasing the weight of the attended adapter. In sum, perceptual adaptation, although reflected in changes of neural activity at early levels (as shown in the aforementioned study), is nevertheless subject to higher-order modulation
Chemo-Archaeological Downsizing in a Hierarchical Universe: Impact of a Top Heavy IGIMF
We make use of a semi-analytical model of galaxy formation to investigate the
origin of the observed correlation between [a/Fe] abundance ratios and stellar
mass in elliptical galaxies. We implement a new galaxy-wide stellar initial
mass function (Top Heavy Integrated Galaxy Initial Mass Function, TH-IGIMF) in
the semi-analytic model SAG and evaluate its impact on the chemical evolution
of galaxies. The SFR-dependence of the slope of the TH-IGIMF is found to be key
to reproducing the correct [a/Fe]-stellar mass relation. Massive galaxies reach
higher [a/Fe] abundance ratios because they are characterized by more top-heavy
IMFs as a result of their higher SFR. As a consequence of our analysis, the
value of the minimum embedded star cluster mass and of the slope of the
embedded cluster mass function, which are free parameters involved in the
TH-IGIMF theory, are found to be as low as 5 solar masses and 2, respectively.
A mild downsizing trend is present for galaxies generated assuming either a
universal IMF or a variable TH-IGIMF. We find that, regardless of galaxy mass,
older galaxies (with formation redshifts > 2) are formed in shorter time-scales
(< 2 Gyr), thus achieving larger [a/Fe] values. Hence, the time-scale of galaxy
formation alone cannot explain the slope of the [a/Fe]-galaxy mass relation,
but is responsible for the big dispersion of [a/Fe] abundance ratios at fixed
stellar mass.We further test the hyphothesis of a TH-IGIMF in elliptical
galaxies by looking into mass-to-light ratios, and luminosity functions. Models
with a TH-IGIMF are also favoured by these constraints. In particular,
mass-to-light ratios agree with observed values for massive galaxies while
being overpredicted for less massive ones; this overprediction is present
regardless of the IMF considered.Comment: 24 pages, 15 figures, 2 tables. (Comments most welcome). Summited to
MNRA
The Variation of Integrated Star IMFs among Galaxies
The integrated galaxial initial mass function (IGIMF) is the relevant
distribution function containing the information on the distribution of stellar
remnants, the number of supernovae and the chemical enrichment history of a
galaxy. Since most stars form in embedded star clusters with different masses
the IGIMF becomes an integral of the assumed (universal or invariant) stellar
IMF over the embedded star-cluster mass function (ECMF). For a range of
reasonable assumptions about the IMF and the ECMF we find the IGIMF to be
steeper (containing fewer massive stars per star) than the stellar IMF, but
below a few Msol it is invariant and identical to the stellar IMF for all
galaxies. However, the steepening sensitively depends on the form of the ECMF
in the low-mass regime. Furthermore, observations indicate a relation between
the star formation rate of a galaxy and the most massive young stellar cluster
in it. The assumption that this cluster mass marks the upper end of a
young-cluster mass function leads to a connection of the star formation rate
and the slope of the IGIMF above a few Msol. The IGIMF varies with the star
formation history of a galaxy. Notably, large variations of the IGIMF are
evident for dE, dIrr and LSB galaxies with a small to modest stellar mass. We
find that for any galaxy the number of supernovae per star (NSNS) is suppressed
relative to that expected for a Salpeter IMF. Dwarf galaxies have a smaller
NSNS compared to massive galaxies. For dwarf galaxies the NSNS varies
substantially depending on the galaxy assembly history and the assumptions made
about the low-mass end of the ECMF. The findings presented here may be of some
consequence for the cosmological evolution of the number of supernovae per
low-mass star and the chemical enrichment of galaxies of different mass.Comment: 27 pages, accepted for publication by Ap
On the Similarity between Cluster and Galactic Stellar Initial Mass Functions
The stellar initial mass functions (IMFs) for the Galactic bulge, the Milky
Way, other galaxies, clusters of galaxies, and the integrated stars in the
Universe are composites from countless individual IMFs in star clusters and
associations where stars form. These galaxy-scale IMFs, reviewed in detail
here, are not steeper than the cluster IMFs except in rare cases. This is true
even though low mass clusters generally outnumber high mass clusters and the
average maximum stellar mass in a cluster scales with the cluster mass. The
implication is that the mass distribution function for clusters and
associations is a power law with a slope of -2 or shallower. Steeper slopes,
even by a few tenths, upset the observed equality between large and small scale
IMFs. Such a cluster function is expected from the hierarchical nature of star
formation, which also provides independent evidence for the IMF equality when
it is applied on sub-cluster scales. We explain these results with analytical
expressions and Monte Carlo simulations. Star clusters appear to be the relaxed
inner parts of a widespread hierarchy of star formation and cloud structure.
They are defined by their own dynamics rather than pre-existing cloud
boundaries.Comment: 22 pages, 2 figures, ApJ, 648, in press, September 1, 200
Gauged N=4 supergravities
We present the gauged N=4 (half-maximal) supergravities in four and five
spacetime dimensions coupled to an arbitrary number of vector multiplets. The
gaugings are parameterized by a set of appropriately constrained constant
tensors, which transform covariantly under the global symmetry groups SL(2) x
SO(6,n) and SO(1,1) x SO(5,n), respectively. In terms of these tensors the
universal Lagrangian and the Killing Spinor equations are given. The known
gaugings, in particular those originating from flux compactifications, are
incorporated in the formulation, but also new classes of gaugings are found.
Finally, we present the embedding chain of the five dimensional into the four
dimensional into the three dimensional gaugings, thereby showing how the
deformation parameters organize under the respectively larger duality groups.Comment: 36 pages, v2: references added, comments added, v3: published
version, references added, typos corrected, v4: sign mistakes in footnote 4
and equation (2.13) correcte
- …
