656 research outputs found

    Conformation of Circular DNA in 2 Dimensions

    Full text link
    The conformation of circular DNA molecules of various lengths adsorbed in a 2D conformation on a mica surface is studied. The results confirm the conjecture that the critical exponent ν\nu is topologically invariant and equal to the SAW value (in the present case ν=3/4\nu=3/4), and that the topology and dimensionality of the system strongly influences the cross-over between the rigid regime and the self-avoiding regime at a scale L8pL\approx 8 \ell_p. Additionally, the bond correlation function scales with the molecular length LL as predicted. For molecular lengths L5pL\leq5 \ell_p, circular DNA behaves like a stiff molecule with approximately elliptic shape.Comment: 4 pages, 5 figure

    Fractal Dimension and Localization of DNA Knots

    Get PDF
    The scaling properties of DNA knots of different complexities were studied by atomic force microscope. Following two different protocols DNA knots are adsorbed onto a mica surface in regimes of (i) strong binding, that induces a kinetic trapping of the three-dimensional (3D) configuration, and of (ii) weak binding, that permits (partial) relaxation on the surface. In (i) the gyration radius of the adsorbed DNA knot scales with the 3D Flory exponent ν0.58\nu\approx 0.58 within error. In (ii), we find ν0.66\nu\approx 0.66, a value between the 3D and 2D (ν=3/4\nu=3/4) exponents, indicating an incomplete 2D relaxation or a different polymer universality class. Compelling evidence is also presented for the localization of the knot crossings in 2D.Comment: 4 pages, 3 figure

    Tourism policy and destination marketing in developing countries: the chain of influence

    Get PDF
    Tourism marketers including destination marketing organisations (DMOs) and international tour operators play a pivotal role in destination marketing, especially in creating destination images. These images, apparent in tourist brochures, are designed to influence tourist decision-making and behaviour. This paper proposes the concept of a “chain of influence” in destination marketing and image-making, suggesting that the content of marketing materials is influenced by the priorities of those who design these materials, e.g. tour operators and DMOs. A content analysis of 2,000 pictures from DMO and tour operator brochures revealed synergies and divergence between these marketers. The brochure content was then compared to the South African tourism policy, concluding that the dominant factor in the chain of influence in the South African context is in fact its organic image

    Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties

    Full text link
    Advanced Monte Carlo simulations are used to study the effect of nano-slit confinement on metric and topological properties of model DNA chains. We consider both linear and circularised chains with contour lengths in the 1.2--4.8 μ\mum range and slits widths spanning continuously the 50--1250nm range. The metric scaling predicted by de Gennes' blob model is shown to hold for both linear and circularised DNA up to the strongest levels of confinement. More notably, the topological properties of the circularised DNA molecules have two major differences compared to three-dimensional confinement. First, the overall knotting probability is non-monotonic for increasing confinement and can be largely enhanced or suppressed compared to the bulk case by simply varying the slit width. Secondly, the knot population consists of knots that are far simpler than for three-dimensional confinement. The results suggest that nano-slits could be used in nano-fluidic setups to produce DNA rings having simple topologies (including the unknot) or to separate heterogeneous ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure

    Structure and dynamics of ring polymers: entanglement effects because of solution density and ring topology

    Full text link
    The effects of entanglement in solutions and melts of unknotted ring polymers have been addressed by several theoretical and numerical studies. The system properties have been typically profiled as a function of ring contour length at fixed solution density. Here, we use a different approach to investigate numerically the equilibrium and kinetic properties of solutions of model ring polymers. Specifically, the ring contour length is maintained fixed, while the interplay of inter- and intra-chain entanglement is modulated by varying both solution density (from infinite dilution up to \approx 40 % volume occupancy) and ring topology (by considering unknotted and trefoil-knotted chains). The equilibrium metric properties of rings with either topology are found to be only weakly affected by the increase of solution density. Even at the highest density, the average ring size, shape anisotropy and length of the knotted region differ at most by 40% from those of isolated rings. Conversely, kinetics are strongly affected by the degree of inter-chain entanglement: for both unknots and trefoils the characteristic times of ring size relaxation, reorientation and diffusion change by one order of magnitude across the considered range of concentrations. Yet, significant topology-dependent differences in kinetics are observed only for very dilute solutions (much below the ring overlap threshold). For knotted rings, the slowest kinetic process is found to correspond to the diffusion of the knotted region along the ring backbone.Comment: 17 pages, 11 figure

    Reactive ring-opened aldehyde metabolites in benzene hematotoxicity.

    Get PDF
    The hematotoxicity of benzene is mediated by reactive benzene metabolites and possibly by other intermediates including reactive oxygen species. We previously hypothesized that ring-opened metabolites may significantly contribute to benzene hematotoxicity. Consistent with this hypothesis, our studies initially demonstrated that benzene is metabolized in vitro to trans-trans-muconaldehyde (MUC), a reactive six-carbon diene dialdehyde, and that MUC is toxic to the bone marrow in a manner similar to benzene. Benzene toxicity most likely involves interactions among several metabolites that operate by different mechanisms to produce more than one biological effect. Our studies indicate that MUC coadministered with hydroquinone is a particularly potent metabolite combination that causes bone marrow damage, suggesting that the involvement of ring-opened metabolites in benzene toxicity may be related to their biological effects in combination with other benzene metabolites. Studies in our laboratory and by others indicate that MUC is metabolized to a variety of compounds by oxidation or reduction of the aldehyde groups. The aldehydic MUC metabolite 6-hydroxy-trans-trans-2,4-hexadienal (CHO-M-OH), similar to MUC but to a lesser extent, is reactive toward glutathione, mutagenic in V79 cells, and hematotoxic in mice. It is formed by monoreduction of MUC, a process that is reversible and could be of biological significance in benzene bone marrow toxicity. The MUC metabolite 6-hydroxy-trans-trans-2,4-hexadienoic (COOH-M-OH) is an end product of MUC metabolism in vitro. Our studies indicate that COOH-M-OH is a urinary metabolite of benzene in mice, a finding that provides further indirect evidence for the in vivo formation of MUC from benzene. Mechanistic studies showed the formation of cis-trans-muconaldehyde in addition to MUC from benzene incubated in a hydroxyl radical-generating Fenton system. These results suggest that the benzene ring is initially opened to cis,cis-muconaldehyde, an unstable isomer that rearranges to cis-trans-muconaldehyde, which further rearranges to trans-trans-muconaldehyde. The latter is not formed from benzene dihydrodiol by reactive oxygen species in a Fenton system that contains reactive oxygen species

    ‘Remembering as Forgetting’: Organizational commemoration as a politics of recognition

    Get PDF
    This paper considers the politics of how organizations remember their past through commemorative settings and artefacts. Although these may be seen as ‘merely’ a backdrop to organizational activity, they form part of the lived experience of organizational spaces that its members enact on a daily basis as part of their routes and routines. The main concern of the paper is with how commemoration is bound up in the reflection and reproduction of hierarchies of organizational recognition. Illustrated with reference to two commemorative settings, the paper explores how organizations perpetuate a narrow set of symbolic ideals attributing value to particular forms of organizational membership while appearing to devalue others. In doing so, they communicate values that undermine attempts to achieve equality and inclusion. Developing a recognition-based critique of this process, the discussion emphasizes how commemorative settings and practices work to reproduce established patterns of exclusion and marginalization. To this end, traditional forms of commemorative portraiture that tend to close off difference are contrasted with a memorial garden, in order to explore the potential for an alternative, recognition-based ethics of organizational commemoration that is more open to the Other
    corecore