150 research outputs found
Convective envelopes in rotating OB stars
We study the effects of rotation on the outer convective zones of massive
stars. We examine the effects of rotation on the thermal gradient and on the
Solberg--Hoiland term by analytical developments and by numerical models.
Writing the criterion for convection in rotating envelopes, we show that the
effects of rotation on the thermal gradient are much larger and of opposite
sign to the effect of the Solberg-Hoiland criterion. On the whole, rotation
favors convection in stellar envelopes at the equator and to a smaller extent
at the poles. In a rotating 20 Msun star at 94% of the critical angular
velocity, there are two convective envelopes, with the bigger one having a
thickness of 13.2% of the equatorial radius. In the non-rotating model, the
corresponding convective zone has a thickness of only 4.6% of the radius. The
occurrence of outer convection in massive stars has many consequences.Comment: 4 pages, 3 figures, accepted by Astronomy and Astrophysic
Physical processes leading to surface inhomogeneities: the case of rotation
In this lecture I discuss the bulk surface heterogeneity of rotating stars,
namely gravity darkening. I especially detail the derivation of the omega-model
of Espinosa Lara & Rieutord (2011), which gives the gravity darkening in
early-type stars. I also discuss the problem of deriving gravity darkening in
stars owning a convective envelope and in those that are members of a binary
system.Comment: 23 pages, 11 figure, Lecture given to the school on the cartography
of the Sun and the stars (May 2014 in Besan\c{c}on), to appear in LNP, Neiner
and Rozelot edts V2: typos correcte
An Extremely Lithium-Rich Bright Red Giant in the Globular Cluster M3
We have serendipitously discovered an extremely lithium-rich star on the red
giant branch of the globular cluster M3 (NGC 5272). An echelle spectrum
obtained with the Keck I HIRES reveals a Li I 6707 Angstrom resonance doublet
of 520 milli-Angstrom equivalent width, and our analysis places the star among
the most Li-rich giants known: log[epsilon(Li)] ~= +3.0. We determine the
elemental abundances of this star, IV-101, and three other cluster members of
similar luminosity and color, and conclude that IV-101 has abundance ratios
typical of giants in M3 and M13 that have undergone significant mixing. We
discuss mechanisms by which a low-mass star may be so enriched in Li, focusing
on the mixing of material processed by the hydrogen-burning shell just below
the convective envelope. While such enrichment could conceivably only happen
rarely, it may in fact regularly occur during giant-branch evolution but be
rarely detected because of rapid subsequent Li depletion.Comment: 7-page LaTeX file, including 2 encapsulated ps figures + 1 table;
accepted for publication in the Astrophysical Journal Letter
Artificial Intelligence Approach to the Determination of Physical Properties of Eclipsing Binaries. I. The EBAI Project
Achieving maximum scientific results from the overwhelming volume of
astronomical data to be acquired over the next few decades will demand novel,
fully automatic methods of data analysis. Artificial intelligence approaches
hold great promise in contributing to this goal. Here we apply neural network
learning technology to the specific domain of eclipsing binary (EB) stars, of
which only some hundreds have been rigorously analyzed, but whose numbers will
reach millions in a decade. Well-analyzed EBs are a prime source of
astrophysical information whose growth rate is at present limited by the need
for human interaction with each EB data-set, principally in determining a
starting solution for subsequent rigorous analysis. We describe the artificial
neural network (ANN) approach which is able to surmount this human bottleneck
and permit EB-based astrophysical information to keep pace with future data
rates. The ANN, following training on a sample of 33,235 model light curves,
outputs a set of approximate model parameters (T2/T1, (R1+R2)/a, e sin(omega),
e cos(omega), and sin i) for each input light curve data-set. The whole sample
is processed in just a few seconds on a single 2GHz CPU. The obtained
parameters can then be readily passed to sophisticated modeling engines. We
also describe a novel method polyfit for pre-processing observational light
curves before inputting their data to the ANN and present the results and
analysis of testing the approach on synthetic data and on real data including
fifty binaries from the Catalog and Atlas of Eclipsing Binaries (CALEB)
database and 2580 light curves from OGLE survey data. [abridged]Comment: 52 pages, accepted to Ap
PHOEBE 2.0 – Where no model has gone before
phoebe 2.0 is an open source framework bridging the gap between stellar observations and models. It allows to create and fit models simultaneously and consistently to a wide range of observational data such as photometry, spectroscopy, spectrapolarimetry, interferometry and astrometry. To reach the level of precision required by the newest generation of instruments such as Kepler, GAIA and the arrays of large telescopes, the code is set up to handle a wide range of phenomena such as multiplicity, rotation, pulsations and magnetic fields, and to model the involved physics to a new level
Survey for Transiting Extrasolar Planets in Stellar Systems. II. Spectrophotometry and Metallicities of Open Clusters
We present metallicity estimates for seven open clusters based on
spectrophotometric indices from moderate-resolution spectroscopy. Observations
of field giants of known metallicity provide a correlation between the
spectroscopic indices and the metallicity of open cluster giants. We use \chi^2
analysis to fit the relation of spectrophotometric indices to metallicity in
field giants. The resulting function allows an estimate of the target-cluster
giants' metallicities with an error in the method of \pm0.08 dex. We derive the
following metallicities for the seven open clusters: NGC 1245,
[m/H]=-0.14\pm0.04; NGC 2099, [m/H]=+0.05\pm0.05; NGC 2324, [m/H]=-0.06\pm0.04;
NGC 2539, [m/H]=-0.04\pm0.03; NGC 2682 (M67), [m/H]=-0.05\pm0.02; NGC 6705,
[m/H]=+0.14\pm0.08; NGC 6819, [m/H]=-0.07\pm0.12. These metallicity estimates
will be useful in planning future extra-solar planet transit searches since
planets may form more readily in metal-rich environments.Comment: 38 pages, including 12 figures. Accepted for publication in A
The Structure of the Homunculus. III. Forming a Disk and Bipolar Lobes in a Rotating Surface Explosion
We present a semi-analytic model for shaping the nebula around eta Carinae
that accounts for the simultaneous production of bipolar lobes and an
equatorial disk through a rotating surface explosion. Material is launched
normal to the surface of an oblate rotating star with an initial kick velocity
that scales approximately with the local escape speed. Thereafter, ejecta
follow ballistic orbital trajectories, feeling only a central force
corresponding to a radiatively reduced gravity. Our model is conceptually
similar to the wind-compressed disk model of Bjorkman & Cassinelli, but we
modify it to an explosion instead of a steady line-driven wind, we include a
rotationally-distorted star, and we treat the dynamics somewhat differently.
Continuum-driving avoids the disk inhibition that normally operates in
line-driven winds. Our model provides a simple method by which rotating hot
stars can simultaneously produce intrinsically bipolar and equatorial mass
ejections, without an aspherical environment or magnetic fields. Although
motivated by eta Carinae, the model may have generic application to other LBVs,
B[e] stars, or SN1987A's nebula. When near-Eddington radiative driving is less
influential, our model generalizes to produce bipolar morphologies without
disks, as seen in many PNe.Comment: ApJ accepted, 9 page
Misaligned spin and orbital axes cause the anomalous precession of DI Herculis
The orbits of binary stars precess as a result of general relativistic
effects, forces arising from the asphericity of the stars, and forces from
additional stars or planets in the system. For most binaries, the theoretical
and observed precession rates are in agreement. One system, however -- DI
Herculis -- has resisted explanation for 30 years. The observed precession rate
is a factor of four slower than the theoretical rate, a disagreement that once
was interpreted as evidence for a failure of general relativity. Among the
contemporary explanations are the existence of a circumbinary planet and a
large tilt of the stellar spin axes with respect to the orbit. Here we report
that both stars of DI Herculis rotate with their spin axes nearly perpendicular
to the orbital axis (contrary to the usual assumption for close binary stars).
The rotationally induced stellar oblateness causes precession in the direction
opposite to that of relativistic precession, thereby reconciling the
theoretical and observed rates.Comment: Nature, in press [11 pg
Presupernova Evolution of Rotating Massive Stars I: Numerical Method and Evolution of the Internal Stellar Structure
The evolution of rotating stars with zero-age main sequence (ZAMS) masses in
the range 8 to 25 M_sun is followed through all stages of stable evolution. The
initial angular momentum is chosen such that the star's equatorial rotational
velocity on the ZAMS ranges from zero to ~ 70 % of break-up. Redistribution of
angular momentum and chemical species are then followed as a consequence of
rotationally induced circulation and instablities. The effects of the
centrifugal force on the stellar structure are included. Uncertain mixing
efficiencies are gauged by observations. We find, as noted in previous work,
that rotation increases the helium core masses and enriches the stellar
envelopes with products of hydrogen burning. We determine, for the first time,
the angular momentum distribution in typical presupernova stars along with
their detailed chemical structure. Angular momentum loss due to (non-magnetic)
stellar winds and the redistribution of angular momentum during core hydrogen
burning are of crucial importance for the specific angular momentum of the
core. Neglecting magnetic fields, we find angular momentum transport from the
core to the envelope to be unimportant after core helium burning. We obtain
specific angular momenta for the iron core and overlaying material of
1E16...1E17 erg s. These values are insensitive to the initial angular
momentum. They are small enough to avoid triaxial deformations of the iron core
before it collapses, but could lead to neutron stars which rotate close to
break-up. They are also in the range required for the collapsar model of
gamma-ray bursts. The apparent discrepancy with the measured rotation rates of
young pulsars is discussed.Comment: 62 pages, including 7 tables and 19 figures. Accepted by Ap
Supernovae from rotating stars
The present paper discusses the main physical effects produced by stellar
rotation on presupernovae, as well as observations which confirm these effects
and their consequences for presupernova models. Rotation critically influences
the mass of the exploding cores, the mass and chemical composition of the
envelopes and the types of supernovae, as well as the properties of the
remnants and the chemical yields. In the formation of gamma-ray bursts,
rotation and the properties of rotating stars appear as the key factor. In
binaries, the interaction between axial rotation and tidal effects often leads
to interesting and unexpected results. Rotation plays a key role in shaping the
evolution and nucleosynthesis in massive stars with very low metallicities
(metallicity below about the Small Magellanic Cloud metallicity down to
Population III stars). At solar and higher metallicities, the effects of
rotation compete with those of stellar winds. In close binaries, the
synchronisation process can lock the star at a high rotation rate despite
strong mass loss and thus both effects, rotation and stellar winds, have a
strong impact. In conclusion, rotation is a key physical ingredient of the
stellar models and of presupernova stages, and the evolution both of single
stars and close binaries. Moreover, important effects are expected along the
whole cosmic history.Comment: 36 pages, 15 figures, published in Handbook of Supernovae, A.W.
Alsabti and P. Murdin (eds), Springe
- …
