15,686 research outputs found

    Projective non-Abelian Statistics of Dislocation Defects in a Z_N Rotor Model

    Full text link
    Non-Abelian statistics is a phenomenon of topologically protected non-Abelian Berry phases as we exchange quasiparticle excitations. In this paper, we construct a Z_N rotor model that realizes a self-dual Z_N Abelian gauge theory. We find that lattice dislocation defects in the model produce topologically protected degeneracy. Even though dislocations are not quasiparticle excitations, they resemble non-Abelian anyons with quantum dimension sqrt(N). Exchanging dislocations can produces topologically protected projective non-Abelian Berry phases. The dislocations, as projective non-Abelian anyons can be viewed as a generalization of the Majorana zero modes.Comment: 4 pages + refs, 4 figures. RevTeX

    Primitive Cohomology of Hopf algebras

    Full text link
    Primitive cohomology of a Hopf algebra is defined by using a modification of the cobar construction of the underlying coalgebra. Among many of its applications, two classifications are presented. Firstly we classify all non locally PI, pointed Hopf algebra domains of Gelfand-Kirillov dimension two; and secondly we classify all pointed Hopf algebras of rank one. The first classification extends some results of Brown, Goodearl and others in an ongoing project to understand all Hopf algebras of low Gelfand-Kirillov dimension. The second generalizes results of Krop-Radford and Wang-You-Chen which classified Hopf algebras of rank one under extra hypothesis. Properties and algebraic structures of the primitive cohomology are discussed

    Doping a spin-orbit Mott Insulator: Topological Superconductivity from the Kitaev-Heisenberg Model and possible application to (Na2/Li2)IrO3

    Full text link
    We study the effects of doping a Mott insulator on the honeycomb lattice where spins interact via direction dependent Kitaev couplings J_K, and weak antiferromagnetic Heisenberg couplings J. This model is known to have a spin liquid ground state and may potentially be realized in correlated insulators with strong spin orbit coupling. The effect of hole doping is studied within a t-J-J_K model, treated using the SU(2) slave boson formulation, which correctly captures the parent spin liquid. We find superconductor ground states with spin triplet pairing that spontaneously break time reversal symmetry. Interestingly, the pairing is qualitatively different at low and high dopings, and undergoes a first order transition with doping. At high dopings, it is smoothly connected to a paired state of electrons propagating with the underlying free particle dispersion. However, at low dopings the dispersion is strongly influenced by the magnetic exchange, and is entirely different from the free particle band structure. Here the superconductivity is fully gapped and topological, analogous to spin polarized electrons with px+ipy pairing. These results may be relevant to honeycomb lattice iridates such as A2IrO3 (A=Li or Na) on doping.Comment: 8 pages + 6 pages supplementary material; 5 figures, 3 tabl

    Ultrathin MgB2 films fabricated on Al2O3 substrate by hybrid physical-chemical vapor deposition with high Tc and Jc

    Full text link
    Ultrathin MgB2 superconducting films with a thickness down to 7.5 nm are epitaxially grown on (0001) Al2O3 substrate by hybrid physical-chemical vapor deposition method. The films are phase-pure, oxidation-free and continuous. The 7.5 nm thin film shows a Tc(0) of 34 K, which is so far the highest Tc(0) reported in MgB2 with the same thickness. The critical current density of ultrathin MgB2 films below 10 nm is demonstrated for the first time as Jc ~ 10^6 A cm^{-2} for the above 7.5 nm sample at 16 K. Our results reveal the excellent superconducting properties of ultrathin MgB2 films with thicknesses between 7.5 and 40 nm on Al2O3 substrate.Comment: 7 pages, 4 figures, 2 table

    Gabor Shearlets

    Get PDF
    In this paper, we introduce Gabor shearlets, a variant of shearlet systems, which are based on a different group representation than previous shearlet constructions: they combine elements from Gabor and wavelet frames in their construction. As a consequence, they can be implemented with standard filters from wavelet theory in combination with standard Gabor windows. Unlike the usual shearlets, the new construction can achieve a redundancy as close to one as desired. Our construction follows the general strategy for shearlets. First we define group-based Gabor shearlets and then modify them to a cone-adapted version. In combination with Meyer filters, the cone-adapted Gabor shearlets constitute a tight frame and provide low-redundancy sparse approximations of the common model class of anisotropic features which are cartoon-like functions.Comment: 24 pages, AMS LaTeX, 4 figure

    Superfluidity in a Three-flavor Fermi Gas with SU(3) Symmetry

    Full text link
    We investigate the superfluidity and the associated Nambu-Goldstone modes in a three-flavor atomic Fermi gas with SU(3) global symmetry. The s-wave pairing occurs in flavor anti-triplet channel due to the Pauli principle, and the superfluid state contains both gapped and gapless fermionic excitations. Corresponding to the spontaneous breaking of the SU(3) symmetry to a SU(2) symmetry with five broken generators, there are only three Nambu-Goldstone modes, one is with linear dispersion law and two are with quadratic dispersion law. The other two expected Nambu-Goldstone modes become massive with a mass gap of the order of the fermion energy gap in a wide coupling range. The abnormal number of Nambu-Goldstone modes, the quadratic dispersion law and the mass gap have significant effect on the low temperature thermodynamics of the matter.Comment: 9 pages, 2 figures, published versio

    Neutrino Emission From Direct Urca Processes in Pion Condensed Quark Matter

    Full text link
    We study neutrino emission from direct Urca processes in pion condensed quark matter. In compact stars with high baryon density, the emission is dominated by the gapless modes of the pion condensation which leads to an enhanced emissivity. While for massless quarks the enhancement is not remarkable, the emissivity is significantly larger and the cooling of the condensed matter is considerably faster than that in normal quark matter when the mass difference between uu- and dd-quarks is sizable.Comment: 12 pages,6 figures, published versio
    corecore