110,118 research outputs found
Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering
We present a detailed temperature dependent Raman light scattering study of
optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K),
Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting
BaFe{2}As{2} single crystals. In all samples we observe a strong continuous
narrowing of the Raman-active Fe and As vibrations upon cooling below the
spin-density-wave transition Ts. We attribute this effect to the opening of the
spin-density-wave gap. The electron-phonon linewidths inferred from these data
greatly exceed the predictions of ab-initio density functional calculations
without spin polarization, which may imply that local magnetic moments survive
well above Ts. A first-order structural transition accompanying the
spin-density-wave transition induces discontinuous jumps in the phonon
frequencies. These anomalies are increasingly suppressed for higher potassium
concentrations. We also observe subtle phonon anomalies at the superconducting
transition temperature Tc, with a behavior qualitatively similar to that in the
cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio
Many-Body Approximation Scheme Beyond GW
We explore the combination of the extended dynamical mean field theory
(EDMFT) with the GW approximation (GWA); the former sums the local
contributions to the self-energies to infinite order in closed form and the
latter handles the non-local ones to lowest order. We investigate the different
levels of self-consistency that can be implemented within this method by
comparing to the exact QMC solution of a finite-size model Hamiltonian. We find
that using the EDMFT solution for the local self-energies as input to the GWA
for the non-local self-energies gives the best result.Comment: 4 pages, 8 figure
Density-Dependent Synthetic Gauge Fields Using Periodically Modulated Interactions
We show that density-dependent synthetic gauge fields may be engineered by
combining periodically modu- lated interactions and Raman-assisted hopping in
spin-dependent optical lattices. These fields lead to a density- dependent
shift of the momentum distribution, may induce superfluid-to-Mott insulator
transitions, and strongly modify correlations in the superfluid regime. We show
that the interplay between the created gauge field and the broken sublattice
symmetry results, as well, in an intriguing behavior at vanishing interactions,
characterized by the appearance of a fractional Mott insulator.Comment: 5 pages, 5 figure
Mosaic spin models with topological order
We study a class of two-dimensional spin models with the Kitaev-type
couplings in mosaic structure lattices to implement topological orders. We show
that they are exactly solvable by reducing them to some free Majorana fermion
models with gauge symmetries. The typical case with a 4-8-8 close packing is
investigated in detail to display the quantum phases with Abelian and
non-Abelian anyons. Its topological properties characterized by Chern numbers
are revealed through the edge modes of its spectrum.Comment: 4 pages, 3 figures. Final version to appear in Phys. Rev. B as a
Rapid Communicatio
Fast spin rotations by optically controlled geometric phases in a quantum dot
We demonstrate optical control of the geometric phase acquired by one of the
spin states of an electron confined in a charge-tunable InAs quantum dot via
cyclic 2pi excitations of an optical transition in the dot. In the presence of
a constant in-plane magnetic field, these optically induced geometric phases
result in the effective rotation of the spin about the magnetic field axis and
manifest as phase shifts in the spin quantum beat signal generated by two
time-delayed circularly polarized optical pulses. The geometric phases
generated in this manner more generally perform the role of a spin phase gate,
proving potentially useful for quantum information applications.Comment: 4 pages, 3 figures, resubmitted to Physical Review Letter
Charge Transport in a Quantum Electromechanical System
We describe a quantum electromechanical system(QEMS) comprising a single
quantum dot harmonically bound between two electrodes and facilitating a
tunneling current between them. An example of such a system is a fullerene
molecule between two metal electrodes [Park et al., Nature, 407, 57 (2000)].
The description is based on a quantum master equation for the density operator
of the electronic and vibrational degrees of freedom and thus incorporates the
dynamics of both diagonal (population) and off diagonal (coherence) terms. We
derive coupled equations of motion for the electron occupation number of the
dot and the vibrational degrees of freedom, including damping of the vibration
and thermo-mechanical noise. This dynamical description is related to
observable features of the system including the stationary current as a
function of bias voltage.Comment: To appear in Phys. Rev. B., 13 pages, single colum
The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs -- Space-weather HMI Active Region Patches
A new data product from the Helioseismic and Magnetic Imager (HMI) onboard
the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region
Patches (SHARPs) is now available. SDO/HMI is the first space-based instrument
to map the full-disk photospheric vector magnetic field with high cadence and
continuity. The SHARP data series provide maps in patches that encompass
automatically tracked magnetic concentrations for their entire lifetime; map
quantities include the photospheric vector magnetic field and its uncertainty,
along with Doppler velocity, continuum intensity, and line-of-sight magnetic
field. Furthermore, keywords in the SHARP data series provide several
parameters that concisely characterize the magnetic-field distribution and its
deviation from a potential-field configuration. These indices may be useful for
active-region event forecasting and for identifying regions of interest. The
indices are calculated per patch and are available on a twelve-minute cadence.
Quick-look data are available within approximately three hours of observation;
definitive science products are produced approximately five weeks later. SHARP
data are available at http://jsoc.stanford.edu and maps are available in either
of two different coordinate systems. This article describes the SHARP data
products and presents examples of SHARP data and parameters.Comment: 27 pages, 7 figures. Accepted to Solar Physic
- …
