2,816 research outputs found
Torsion pendulum facility for direct force measurements of LISA GRS related disturbances
A four mass torsion pendulum facility for testing of the LISA GRS is under
development in Trento. With a LISA-like test mass suspended off-axis with
respect to the pendulum fiber, the facility allows for a direct measurement of
surface force disturbances arising in the GRS. We present here results with a
prototype pendulum integrated with very large-gap sensors, which allows an
estimate of the intrinsic pendulum noise floor in the absence of sensor related
force noise. The apparatus has shown a torque noise near to its mechanical
thermal noise limit, and would allow to place upper limits on GRS related
disturbances with a best sensitivity of 300 fN/Hz^(1/2) at 1mHz, a factor 50
from the LISA goal. Also, we discuss the characterization of the gravity
gradient noise, one environmental noise source that could limit the apparatus
performances, and report on the status of development of the facility.Comment: Submitted to Proceedings of the 6th International LISA Symposium, AIP
Conference Proceedings 200
Time to review the role of surrogate endpoints in health policy: state of the art and the way forward
The efficacy of medicines, medical devices, and other health technologies should be proved in trials that assess final patient-relevant outcomes such as survival or morbidity. However, market access and coverage decisions are often based on surrogate endpoints, biomarkers, or intermediate endpoints, which aim to substitute and predict patient-relevant outcomes that are unavailable due to methodological, financial, or practical constraints. We provide a summary of the current use of surrogate endpoints in healthcare policy, discussing the case for and against their adoption and reviewing validation methods. We introduce a three-step framework for policy makers to handle surrogates, which involves establishing the level of evidence, assessing the strength of the association, and quantifying relations between surrogates and final outcomes. Although use of surrogates can be problematic, they can, when selected and validated appropriately, offer important opportunities for more efficient clinical trials and faster access to new health technologies that benefit patients and healthcare systems
The Dusty Starburst Nucleus of M33
We have thoroughly characterized the ultraviolet to near-infrared (0.15 - 2.2
micron) spectral energy distribution (SED) of the central parsec of the M33
nucleus through new infrared photometry and optical/near-infrared spectroscopy,
combined with ultraviolet/optical observations from the literature and the HST
archive. The SED shows evidence for a significant level of attenuation, which
we model through a Monte Carlo radiative transfer code as a shell of clumpy
Milky Way-type dust (tau_V ~ 2 +/- 1). The discovery of Milky Way-type dust
(with a strong 2175 A bump) internal to the M33 nucleus is different from
previous work which has found SMC-like dust (no bump) near starburst regions.
The amount by which dust can be processed may be related to the mass and age of
the starburst as well as the extent to which the dust can shield itself. Our
starburst models include the effects of this dust and can fit the SED if the
nucleus was the site of a moderate (~10^8 L_sun at 10 Myrs) episode of coeval
star formation about 70 Myrs ago. This result is quite different from previous
studies which resorted to multiple stellar populations (between 2 and 7)
attenuated by either no or very little internal dust. The M33 nuclear starburst
is remarkably similar to an older version (70 Myr versus 10 Myr) of the
ultra-compact starburst in the center of the Milky Way.Comment: 29 pages, 9 embedded figures, ApJ, in pres
Digital detection of exosomes by interferometric imaging
Exosomes, which are membranous nanovesicles, are actively released by cells and have been attributed to roles in cell-cell communication, cancer metastasis, and early disease diagnostics. The small size (30–100 nm) along with low refractive index contrast of exosomes makes direct characterization and phenotypical classification very difficult. In this work we present a method based on Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows multiplexed phenotyping and digital counting of various populations of individual exosomes (>50 nm) captured on a microarray-based solid phase chip. We demonstrate these characterization concepts using purified exosomes from a HEK 293 cell culture. As a demonstration of clinical utility, we characterize exosomes directly from human cerebrospinal fluid (hCSF). Our interferometric imaging method could capture, from a very small hCSF volume (20 uL), nanoparticles that have a size compatible with exosomes, using antibodies directed against tetraspanins. With this unprecedented capability, we foresee revolutionary implications in the clinical field with improvements in diagnosis and stratification of patients affected by different disorders.This work was supported by Regione Lombardia and Fondazione Cariplo through POR-FESR, project MINER (ID 46875467); Italian Ministry of Health, Ricerca Corrente. This work was partially supported by The Scientific and Technological Research Council of Turkey (grant #113E643). (Regione Lombardia; 46875467 - Fondazione Cariplo through POR-FESR, project MINER; Italian Ministry of Health, Ricerca Corrente; 113E643 - Scientific and Technological Research Council of Turkey)Published versio
Small optic suspensions for Advanced LIGO input optics and other precision optical experiments
We report on the design and performance of small optic suspensions developed
to suppress seismic motion of out-of-cavity optics in the Input Optics
subsystem of the Advanced LIGO interferometric gravitational wave detector.
These compact single stage suspensions provide isolation in all six degrees of
freedom of the optic, local sensing and actuation in three of them, and passive
damping for the other three
Emergence of a non trivial fluctuating phase in the XY model on regular networks
We study an XY-rotor model on regular one dimensional lattices by varying the
number of neighbours. The parameter is defined.
corresponds to mean field and to nearest neighbours coupling. We
find that for the system does not exhibit a phase transition,
while for the mean field second order transition is recovered.
For the critical value , the systems can be in a non
trivial fluctuating phase for whichthe magnetisation shows important
fluctuations in a given temperature range, implying an infinite susceptibility.
For all values of the magnetisation is computed analytically in the
low temperatures range and the magnetised versus non-magnetised state which
depends on the value of is recovered, confirming the critical value
ANALISI DELL’INDICE DI INTERAZIONE BAMBINO-PETS IN FATTORIA ZOOANTROPOLOGICA: STUDIO PILOTA
INTRODUZIONE - La didattica applicata alla zooantropologia prevede un’attuazione in campo educativo e pedagogico dei principi zooantropologici; essa si prefigge un duplice obiettivo: di ridurre il gap relazionale tra animali e giovani generazioni e di recuperare i contenuti e le valenze della relazione, al fine dell’utilizzo pedagogico ed educativo. Nasce un nuovo modello educativo che pone al centro delle strutture pedagogiche l’animale, non più come oggetto da sfruttare, ma come soggetto che aiuti il bambino nella sua crescita educativa (1,2). In quest’ottica generale, la Fattoria Zooantropologica sembra essere un buon sistema in grado di permettere la “fruizione” da parte di bambini e\o soggetti con disabilità di questo modello relazionale e di consentire, altresì, attività e terapie assistite con gli animali (3,4).
La Fattoria Zooantropologica offre l’opportunità di attivare la relazione reciproca in un ambiente nuovo, attraente e confortevole tra il fruitore e l’animale che giova di un habitat naturale e familiare. L’esperienza diretta permette ai bambini di usare tutti i loro sensi per imparare: più i bambini vedono, toccano, odorano, sentono, gustano, più imparano (5,6). Partendo da questi presupposti, lo studio si è posto l’obiettivo di effettuare una valutazione del gradimento delle differenti specie animali, attraverso l’analisi degli indici di interazione dei bambini rispetto agli animali presenti in fattoria, al fine di fornire delle linee guida nella scelta del pet in relazione ad una amplificazione delle risposte cognitive ed emozionali del bambino
Gas damping force noise on a macroscopic test body in an infinite gas reservoir
We present a simple analysis of the force noise associated with the
mechanical damping of the motion of a test body surrounded by a large volume of
rarefied gas. The calculation is performed considering the momentum imparted by
inelastic collisions against the sides of a cubic test mass, and for other
geometries for which the force noise could be an experimental limitation. In
addition to arriving at an accurated estimate, by two alternative methods, we
discuss the limits of the applicability of this analysis to realistic
experimental configurations in which a test body is surrounded by residual gas
inside an enclosure that is only slightly larger than the test body itself.Comment: 8 pages. updated with correct translational damping coefficient for
cylinder on axis. added cylinder orthogonal to symmetry axis, force and
torque. slightly edited throughou
Thermal gradient-induced forces on geodetic reference masses for LISA
The low frequency sensitivity of space-borne gravitational wave observatories
will depend critically on the geodetic purity of the trajectories of orbiting
test masses. Fluctuations in the temperature difference across the enclosure
surrounding the free-falling test mass can produce noisy forces through several
processes, including the radiometric effect, radiation pressure, and
outgassing. We present here a detailed experimental investigation of thermal
gradient-induced forces for the LISA gravitational wave mission and the LISA
Pathfinder, employing high resolution torsion pendulum measurements of the
torque on a LISA-like test mass suspended inside a prototype of the LISA
gravitational reference sensor that will surround the test mass in orbit. The
measurement campaign, accompanied by numerical simulations of the radiometric
and radiation pressure effects, allows a more accurate and representative
characterization of thermal-gradient forces in the specific geometry and
environment relevant to LISA free-fall. The pressure dependence of the measured
torques allows clear identification of the radiometric effect, in quantitative
agreement with the model developed. In the limit of zero gas pressure, the
measurements are most likely dominated by outgassing, but at a low level that
does not threaten the LISA sensitivity goals.Comment: 21 pages, 16 figures, submitted to Physical Review
- …
