2,908 research outputs found
Arcfinder: An algorithm for the automatic detection of gravitational arcs
We present an efficient algorithm designed for and capable of detecting
elongated, thin features such as lines and curves in astronomical images, and
its application to the automatic detection of gravitational arcs. The algorithm
is sufficiently robust to detect such features even if their surface brightness
is near the pixel noise in the image, yet the amount of spurious detections is
low. The algorithm subdivides the image into a grid of overlapping cells which
are iteratively shifted towards a local centre of brightness in their immediate
neighbourhood. It then computes the ellipticity for each cell, and combines
cells with correlated ellipticities into objects. These are combined to graphs
in a next step, which are then further processed to determine properties of the
detected objects. We demonstrate the operation and the efficiency of the
algorithm applying it to HST images of galaxy clusters known to contain
gravitational arcs. The algorithm completes the analysis of an image with
3000x3000 pixels in about 4 seconds on an ordinary desktop PC. We discuss
further applications, the method's remaining problems and possible approaches
to their solution.Comment: 12 pages, 12 figure
A Dynamic Programming Solution to Bounded Dejittering Problems
We propose a dynamic programming solution to image dejittering problems with
bounded displacements and obtain efficient algorithms for the removal of line
jitter, line pixel jitter, and pixel jitter.Comment: The final publication is available at link.springer.co
VLT Diffraction Limited Imaging and Spectroscopy in the NIR: Weighing the black hole in Centaurus A with NACO
We present high spatial resolution near-infrared spectra and images of the
nucleus of Centaurus A (NGC 5128) obtained with NAOS-CONICA at the VLT. The
adaptive optics corrected data have a spatial resolution of 0.06" (FWHM) in K-
and 0.11" in H-band, four times higher than previous studies. The observed gas
motions suggest a kinematically hot disk which is orbiting a central object and
is oriented nearly perpendicular to the nuclear jet. We model the central
rotation and velocity dispersion curves of the [FeII] gas orbiting in the
combined potential of the stellar mass and the (dominant) black hole. Our
physically most plausible model, a dynamically hot and geometrically thin gas
disk, yields a black hole mass of M_bh = (6.1 +0.6/-0.8) 10^7 M_sun. As the
physical state of the gas is not well understood, we also consider two limiting
cases: first a cold disk model, which completely neglects the velocity
dispersion; it yields an M_bh estimate that is almost two times lower. The
other extreme case is to model a spherical gas distribution in hydrostatic
equilibrium through Jeans equation. Compared to the hot disk model the best-fit
black hole mass increases by a factor of 1.5. This wide mass range spanned by
the limiting cases shows how important the gas physics is even for high
resolution data. Our overall best-fitting black hole mass is a factor of 2-4
lower than previous measurements. With our revised M_bh estimate, Cen A's
offset from the M_bh-sigma relation is significantly reduced; it falls above
this relation by a factor of ~2, which is close to the intrinsic scatter of
this relation. (Abridged)Comment: 12 pages, 14 figures, including minor changes following the referee
report; accepted for publication in The Astrophysical Journa
Applying consumer responsibility principle in evaluating environmental load of carbon emissions
There is a need for a proper indicator in order to assess the environmental impact of international
trade, therefore using the carbon footprint as an indicator can be relevant and useful. The aim of this
study is to show from a methodological perspective how the carbon footprint, combined with input-
output models can be used for analysing the impacts of international trade on the sustainable use
of national resources in a country. The use of the input-output approach has the essential advantage
of being able to track the transformation of goods through the economy. The study examines the environmental
impact of consumption related to international trade, using the consumer responsibility
principle. In this study the use of the carbon footprint and input-output methodology is shown on the
example of the Hungarian consumption and the impact of international trade. Moving from a production-
based approach in climate policy to a consumption-perspective principle and allocation,
would also help to increase the efficiency of emission reduction targets and the evaluation of the
ecological impacts of international trade
Optical and infrared properties of V1647 Orionis during the 2003-2006 outburst. I The reflection nebula
Aims: The recent outburst of the young eruptive star V1647 Orionis has
produced a spectacular appearance of a new reflection nebula in Orion (McNeil's
nebula). We present an optical/near infrared investigation of McNeil's nebula.
This analysis is aimed at determining the morphology, temporal evolution and
nature of the nebula and its connection to the outburst.
Method: We performed multi epoch B, V, R, I, z, and K imaging of McNeil's
nebula and V1647 Ori as well as K_S imaging polarimetry. The multiband imaging
allows us to reconstruct the extinction map inside the nebula. Through
polarimetric observations we attempt to disentangle the emission from the
nebula from that of the accretion disk around V1647 Ori. We also attempt to
resolve the small spatial scale structure of the illuminating source.
Results: The energy distribution and temporal evolution of McNeil's nebula
mimic that of the illuminating source. The extinction map reveals a region of
higher extinction in the direction of V1647 Ori. Excluding foreground
extionction, the optical extinction due to McNeil's nebula in the direction of
V1647 Ori is A_V ~ 6.5 mag. The polarimetric measurement shows a compact high
polarization emission around V1647 Ori. The percentage of K_S band linear
polarization goes from 10 -- 20 %. The vectors are all well aligned with a
position angle of 90 +/- 9 degree East of North. This may correspond to the
orientation of a possible accretion disk around V1647 Ori. These findings
suggest that the appearance of McNeil's nebula is due to reflection of light by
pre-existing material in the surroundings of V1647 Ori. We also report on the
discovery of a new candidate brown dwarf or protostar in the vicinity of V1647
Ori as well as the presence of clumpy structure within HH 22A.Comment: 8 pages, 7 figures, in pres
Constraining the orbit of the possible companion to Beta Pictoris: New deep imaging observations
We recently reported on the detection of a possible planetary-mass companion
to Beta Pictoris at a projected separation of 8 AU from the star, using data
taken in November 2003 with NaCo, the adaptive-optics system installed on the
Very Large Telescope UT4. Eventhough no second epoch detection was available,
there are strong arguments to favor a gravitationally bound companion rather
than a background object. If confirmed and located at a physical separation of
8 AU, this young, hot (~1500 K), massive Jovian companion (~8 Mjup) would be
the closest planet to its star ever imaged, could be formed via core-accretion,
and could explain the main morphological and dynamical properties of the dust
disk. Our goal was to return to Beta Pic five years later to obtain a
second-epoch observation of the companion or, in case of a non-detection,
constrain its orbit. Deep adaptive-optics L'-band direct images of Beta Pic and
Ks-band Four-Quadrant-Phase-Mask (4QPM) coronagraphic images were recorded with
NaCo in January and February 2009. We also use 4QPM data taken in November
2004. No point-like signal with the brightness of the companion candidate
(apparent magnitudes L'=11.2 or Ks ~ 12.5) is detected at projected distances
down to 6.5 AU from the star in the 2009 data. As expected, the non-detection
does not allow to rule out a background object; however, we show that it is
consistent with the orbital motion of a bound companion that got closer to the
star since first observed in 2003 and that is just emerging from behind the
star at the present epoch. We place strong constraints on the possible orbits
of the companion and discuss future observing prospects.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Astronomy
and Astrophysic
A brown dwarf desert for intermediate mass stars in Sco OB2?
We present JHK observations of 22 intermediate-mass stars in Sco OB2,
obtained with VLT/NACO. The survey was performed to determine the status of
(sub)stellar candidate companions of A and late-B members. The distinction
between companions and background stars is by a comparison with isochrones and
statistical arguments. We are sensitive to companions in the separation range
0.1''-11'' (13-1430 AU) and K<17. We detect 62 secondaries of which 18 are
physical companions (3 new), 11 candidates, and 33 background stars. The
companion masses are in the range 0.03<M<1.19 Msun, with mass ratios
0.06<q<0.55. We include in our sample a subset of 9 targets with multi-color
ADONIS observations from Kouwenhoven et al. (2005). In the ADONIS survey
secondaries with K12 as
background stars. Our multi-color analysis demonstrates that the simple K=12
criterion correctly classifies the secondaries in ~80% of the cases. We
reanalyse the total ADONIS/NACO sample and conclude that of the 176
secondaries, 25 are physical companions, 55 are candidates, and 96 are
background stars. Although we are sensitive and complete to brown dwarfs as
faint as K=14 in the separation range 130-520 AU, we detect only one, giving a
brown dwarf companion fraction of 0.5% (M>30 MJ). However, the number of brown
dwarfs is consistent with an extrapolation of the stellar companion mass
distribution. This indicates that the physical mechanism for the formation of
brown dwarfs around intermediate mass stars is similar to that of stellar
companions, and that the embryo ejection mechanism does not need to be invoked
in order to explain the small number of brown dwarf companions among these
stars.Comment: 29 pages, 9 figures, accepted by A&
Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment-North America
Global ozone analyses, based on assimilation of stratospheric profile and ozone column measurements, and NOy predictions from the Real-time Air Quality Modeling System (RAQMS) are used to estimate the ozone and NOy budget over the continental United States during the July-August 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A). Comparison with aircraft, satellite, surface, and ozonesonde measurements collected during INTEX-A show that RAQMS captures the main features of the global and continental U.S. distribution of tropospheric ozone, carbon monoxide, and NOy with reasonable fidelity. Assimilation of stratospheric profile and column ozone measurements is shown to have a positive impact on the RAQMS upper tropospheric/lower stratosphere ozone analyses, particularly during the period when SAGE III limb scattering measurements were available. Eulerian ozone and NOy budgets during INTEX-A show that the majority of the continental U.S. export occurs in the upper troposphere/lower stratosphere poleward of the tropopause break, a consequence of convergence of tropospheric and stratospheric air in this region. Continental U.S. photochemically produced ozone was found to be a minor component of the total ozone export, which was dominated by stratospheric ozone during INTEX-A. The unusually low photochemical ozone export is attributed to anomalously cold surface temperatures during the latter half of the INTEX-A mission, which resulted in net ozone loss during the first 2 weeks of August. Eulerian NOy budgets are shown to be very consistent with previously published estimates. The NOy export efficiency was estimated to be 24%, with NOx + PAN accounting for 54% of the total NOy export during INTEX-A. Copyright 2007 by the American Geophysical Union
Fully Sampled Maps of Ices and Silicates in Front of Cepheus A East with Spitzer
We report the first fully sampled maps of the distribution of interstellar
CO2 ices, H2O ices and total hydrogen nuclei, as inferred from the 9.7 micron
silicate feature, toward the star-forming region Cepheus A East with the IRS
instrument onboard the Spitzer Space Telescope. We find that the column density
distributions for these solid state features all peak at, and are distributed
around, the location of HW2, the protostar believed to power one of the
outflows observed in this star-forming region. A correlation between the column
density distributions of CO2 and water ice with that of total hydrogen
indicates that the solid state features we mapped mostly arise from the same
molecular clumps along the probed sight lines. We therefore derive average CO2
ice and water ice abundances with respect to the total hydrogen column density
of X(CO2)_ice~1.9x10^-5 and X(H2O)_ice~7.5x10^-5. Within errors, the abundances
for both ices are relatively constant over the mapped region exhibiting both
ice absorptions. The fraction of CO2 ice with respect to H2O ice is also
relatively constant at a value of 22% over that mapped region. A clear
triple-peaked structure is seen in the CO2 ice profiles. Fits to those profiles
using current laboratory ice analogs suggest the presence of both a
low-temperature polar ice mixture and a high-temperature methanol-rich ice
mixture along the probed sightlines. Our results further indicate that thermal
processing of these ices occurred throughout the sampled region.Comment: 26 pages, 8 figures, accepted for publication in Ap
- …
