7,842 research outputs found
critRHIC: The RHIC Low Energy Program
Recent experimental and theoretical developments have motivated interest in a
more detailed exploration of heavy ion collisions in the range sqrt(sNN)=5-15
GeV. In contrast to interactions at the full RHIC energy of sqrt(sNN)=200 GeV,
such collisions result in systems characterized by much higher baryon chemical
potential, muB. Extensions of lattice QCD calculations to non-zero values of
muB suggest that a critical point may exist in this region of the QCD phase
diagram. Discovery of the critical point or, equivalently, determining the
location where the phase transition from partonic to hadronic matter switches
from a smooth crossover to 1st order would establish a major landmark in the
phase diagram. Initial studies of Pb+Pb collisions in this energy range have
revealed several unexpected features in the data. In response to these results,
it has been suggested that the existing RHIC accelerator and experiments can be
used to further the investigation of this important physics topic. This
proceeding briefly summarizes the theoretical and experimental situation with
particular emphasis on the conclusions from a RIKEN BNL workshop held in March
of 2006.Comment: 8 pages, 2 figures, Conference Proceeding from Strangeness in Quark
Matter 2006, accepted for publication in J. Phys. G; Added final journal
reference and fixed typo in Ref
Low cost solar energy collection system
A fixed, linear, ground-based primary reflector having an extended, curved sawtooth contoured surface covered with a metallized polymeric reflecting material, reflected solar energy to a movably supported collector that was kept at the concentrated line focus of the reflector primary. Efficient utilization leading to high temperatures from the reflected solar energy was obtained by cylindrical shaped secondary reflectors that directed off-angle energy to the absorber pipe
Interferometry signatures for QCD first-order phase transition in heavy ion collisions at GSI-FAIR energies
Using the technique of quantum transport of the interfering pair we examine
the Hanbury-Brown-Twiss (HBT) interferometry signatures for the
particle-emitting sources of pions and kaons produced in the heavy ion
collisions at GSI-FAIR energies. The evolution of the sources is described by
relativistic hydrodynamics with the system equation of state of the first-order
phase transition from quark-gluon plasma (QGP) to hadronic matter. We use
quantum probability amplitudes in a path-integral formalism to calculate the
two-particle correlation functions, where the effects of particle decay and
multiple scattering are taken into consideration. We find that the HBT radii of
kaons are smaller than those of pions for the same initial conditions. Both the
HBT radii of pions and kaons increase with the system initial energy density.
The HBT lifetimes of the pion and kaon sources are sensitive to the initial
energy density. They are significantly prolonged when the initial energy
density is tuned to the phase boundary between the QGP and mixed phase. This
prolongations of the HBT lifetimes of pions and kaons may likely be observed in
the heavy ion collisions with an incident energy in the GSI-FAIR energy range.Comment: 16 pages, 4 figure
Is Strangeness still interesting at RHIC ?
With the advent of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory (BNL), Heavy Ion Physics will enter a new energy regime.
The question is whether the signatures proposed for the discovery of a phase
transition from hadronic matter to a Quark Gluon Plasma (QGP), that were
established on the basis of collisions at the BEVALAC, the AGS, and the SPS,
respectively, are still useful and detectable at these high incident energies.
In the past two decades, measurements related to strangeness formation in the
collision were advocated as potential signatures and were tested in numerous
fixed target experiments at the AGS and the SPS. In this article I will review
the capabilities of the RHIC detectors to measure various aspects of
strangeness, and I will try to answer the question whether the information
content of those measurements is comparable to the one at lower energies.Comment: 12 pages, 7 figures, Invited Talk at the IV International Conference
on Strangeness in Quark Matter, Padova (Italy), July 20-24, 199
Antihyperon-Production in Relativistic Heavy Ion Collision
Recently it has been shown that the observed antiproton yield in heavy-ion
collisions at CERN-SpS energies can be understood by multi-pionic interactions
which enforce local chemical equilibrium of the antiprotons with the nucleons
and pions. Here we show that antihyperons are driven towards local chemical
equilibrium with pions, nucleons and kaons on a timescale of less than 3 fm/c
when applying a similar argument for the antihyperons by considering the
inverse channel of annihilation reactions anti-Y + p to pions + kaons. These
multi-mesonic reactions easily explain the antihyperon yields at CERN-SpS
energies as advertised in pure thermal, hadronic models without the need of a
quark gluon plasma phase. In addition, the argument also applies for AGS
energies.Comment: 4 pages using RevTeX, 1 eps figur
System-size dependence of the pion freeze-out volume as a potential signature for the phase transition to a Quark Gluon Plasma
Hanburry-Brown-Twiss (HBT) correlation functions and radii of negatively
charged pions from C+C, Si+Si, Cu+Cu, and In+In at lower RHIC/SPS energies are
calculated with the UrQMD transport model and the CRAB analyzing program. We
find a minimum in the excitation function of the pion freeze-out volume at low
transverse momenta and around GeV which can be related to
the transition from hadronic to string matter (which might be interpreted as a
pre-cursor of the QGP). The existence of the minimum is explained by the
competition of two mechanisms of the particle production, resonance decays and
string formation/fragmentation.Comment: 12 pages, 4 fig
Performance of the combined zero degree calorimeter for CMS
The combined zero degree calorimeter (ZDC) is a combination of sampling quartz/tungsten electromagnetic and hadronic calorimeters. Two identical combined calorimeters are located in the LHC tunnel at CERN at the straight section 140 m on each side of the CMS interaction vertex and between the two beam pipes. They will detect very forward photons and neutrons. ZDC information can be used for a variety of physics measurements as well as improving the collision centrality determination in heavy-ion collisions. Results are presented for ZDC performance studies with the CERN SPS H2 test beam.The combined zero degree calorimeter (ZDC) is a combination of sampling quartz/tungsten electromagnetic and hadronic calorimeters. Two identical combined calorimeters are located in the LHC tunnel at CERN at the straight section ~140 m on each side of the CMS interaction vertex and between the two beam pipes. They will detect very forward photons and neutrons. ZDC information can be used for a variety of physics measurements as well as improving the collision centrality determination in heavy-ion collisions. Results are presented for ZDC performance studies with the CERN SPS H2 test beam
- …
