253 research outputs found

    Opportunity to Test non-Newtonian Gravity Using Interferometric Sensors with Dynamic Gravity Field Generators

    Get PDF
    We present an experimental opportunity for the future to measure possible violations to Newton's 1/r^2 law in the 0.1-10 meter range using Dynamic gravity Field Generators (DFG) and taking advantage of the exceptional sensitivity of modern interferometric techniques. The placement of a DFG in proximity to one of the interferometer's suspended test masses generates a change in the local gravitational field that can be measured at a high signal to noise ratio. The use of multiple DFGs in a null experiment configuration allows to test composition independent non-Newtonian gravity significantly beyond the present limits. Advanced and third-generation gravitational-wave detectors are representing the state-of-the-art in interferometric distance measurement today, therefore we illustrate the method through their sensitivity to emphasize the possible scientific reach. Nevertheless, it is expected that due to the technical details of gravitational-wave detectors, DFGs shall likely require dedicated custom configured interferometry. However, the sensitivity measure we derive is a solid baseline indicating that it is feasible to consider probing orders of magnitude into the pristine parameter well beyond the present experimental limits significantly cutting into the theoretical parameter space.Comment: 9 pages, 6 figures; Physical Review D, vol. 84, Issue 8, id. 08200

    VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy

    Get PDF
    Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax experienced a minor merger event. Despite recent progress, only the high metallicity end of Fornax field stars ([Fe/H]>-1.2 dex) has been sampled in larger number via high resolution spectroscopy. We want to better understand the full chemical evolution of this galaxy by better sampling the whole metallicity range, including more metal poor stars. We use the VLT-FLAMES multi-fibre spectrograph in high-resolution mode to determine the abundances of several alpha, iron-peak and neutron-capture elements in a sample of 47 individual Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We combine these abundances with accurate age estimates derived from the age probability distribution from the colour-magnitude diagram of Fornax. Similar to other dwarf spheroidal galaxies, the old, metal-poor stars of Fornax are typically alpha-rich while the young metal-rich stars are alpha-poor. In the classical scenario of the time delay between SNe II and SNe Ia, we confirm that SNe Ia started to contribute to the chemical enrichment at [Fe/H] between -2.0 and -1.8 dex. We find that the onset of SNe Ia took place between 12-10 Gyrs ago. The high values of [Ba/Fe], [La/Fe] reflect the influence of SNe Ia and AGB stars in the abundance pattern of the younger stellar population of Fornax. Our findings of low [alpha/Fe] and enhanced [Eu/Mg] are compatible with an initial mass function that lacks the most massive stars and with star formation that kept going on throughout the whole history of Fornax. We find that massive stars kept enriching the interstellar medium in alpha-elements, although they were not the main contributor to the iron enrichment.Comment: Resubmitted to A&A (18/09/2014) after Referee's comment

    Millimagnitude Photometry for Transiting Extrasolar Planetary Candidates. V. Follow-up of 30 OGLE Transits. New Candidates

    Full text link
    We used VLT/VIMOS images in the V band to obtain light curves of extrasolar planetary transits OGLE-TR-111 and OGLE-TR-113, and candidate planetary transits: OGLE-TR-82, OGLE-TR-86, OGLE-TR-91, OGLE-TR-106, OGLE-TR-109, OGLE-TR-110, OGLE-TR-159, OGLE-TR-167, OGLE-TR-170, OGLE-TR-171. Using difference imaging photometry, we were able to achieve millimagnitude errors in the individual data points. We present the analysis of the data and the light curves, by measuring transit amplitudes and ephemerides, and by calculating geometrical parameters for some of the systems. We observed 9 OGLE objects at the predicted transit moments. Two other transits were shifted in time by a few hours. For another seven objects we expected to observe transits during the VIMOS run, but they were not detected. The stars OGLE-TR-111 and OGLE-TR-113 are probably the only OGLE objects in the observed sample to host planets, with the other objects being very likely eclipsing binaries or multiple systems. In this paper we also report on four new transiting candidates which we have found in the data.Comment: 11 pages, 17 figures, accepted for publication in A&

    Two distinct ancient components in the Sculptor Dwarf Spheroidal Galaxy: First Results from DART

    Full text link
    We have found evidence for the presence of two distinct ancient stellar components (both geq 10 Gyr old) in the Sculptor dwarf spheroidal galaxy. We used the ESO Wide Field Imager (WFI) in conjunction with the VLT/FLAMES spectrograph to study the properties of the resolved stellar population of Sculptor out to and beyond the tidal radius. We find that two components are discernible in the spatial distribution of Horizontal Branch stars in our imaging, and in the [Fe/H] and v_hel distributions for our large sample of spectroscopic measurements. They can be generally described as a ``metal-poor'' component ([Fe/H] -1.7). The metal-poor stars are more spatially extended than the metal-rich stars, and they also appear to be kinematically distinct. These results provide an important insight into the formation processes of small systems in the early universe and the conditions found there. Even this simplest of galaxies appears to have had a surprisingly complex early evolution.Comment: accepted for publication in ApJL 12 pages, 4 figure

    A Survey of Local Group Galaxies Currently Forming Stars: III. A Search for Luminous Blue Variables and Other H-alpha Emission-Lined Stars

    Full text link
    We describe a search for H-alpha emission-lined stars in M31, M33, and seven dwarfs in or near the Local Group (IC 10, NGC 6822, WLM, Sextans B, Sextans A, Pegasus and the Phoenix dwarf) using interference filter imaging with the KPNO and CTIO 4-m telescope and Mosaic cameras. The survey is aimed primarily at identifying new Luminous Blue Variables (LBVs) from their spectroscopic similarity to known LBVs, avoiding the bias towards photometric variability, which may require centuries to manifest itself if LBVs go through long quiescent periods. Followup spectroscopy with WIYN confirms that our survey detected a wealth of stars whose spectra are similar to the known LBVs. We "classify" the spectra of known LBVs, and compare these to the spectra of the new LBV candidates. We demonstrate spectacular spectral variability for several of the new LBV candidates, such as AM2, previously classified as a Wolf-Rayet star, which now shows FeI, FeII and Balmer emission lines but neither the NIII 4634,42 nor HeII 4686 emission that it did in 1982. Profound spectral changes are also noted for other suspected and known LBVs. Several of the LBV candidates also show >0.5 mag changes in V over the past 10-20 years. The number of known or suspected LBVs is now 24 in M31, 37 in M33, 1 in NGC 6822, and 3 in IC 10. We estimate that the total number of LBVs in M31 and M33 may be several hundred, in contrast to the 8 known historically through large-scale photometric variability. This has significant implications for the time scale of the LBV phase. We also identify a few new WRs and peculiar emission-lined objects.Comment: Accepted by the Astronomical Journal. Version with higher quality figures may be downloaded from http://www.lowell.edu/users/massey/has.pdf.g

    Chemical Composition of Extremely Metal-Poor Stars in the Sextans Dwarf Spheroidal Galaxy

    Get PDF
    Chemical abundances of six extremely metal-poor ([Fe/H]<-2.5) stars in the Sextans dwarf spheroidal galaxy are determined based on high resolution spectroscopy (R=40,000) with the Subaru Telescope High Dispersion Spectrograph. (1) The Fe abundances derived from the high resolution spectra are in good agreement with the metallicity estimated from the Ca triplet lines in low resolution spectra. The lack of stars with [Fe/H]=<-3 in Sextans, found by previous estimates from the Ca triplet, is confirmed by our measurements, although we note that high resolution spectroscopy for a larger sample of stars will be necessary to estimate the true fraction of stars with such low metallicity. (2) While one object shows an overabundance of Mg (similar to Galactic halo stars), the Mg/Fe ratios of the remaining five stars are similar to the solar value. This is the first time that low Mg/Fe ratios at such low metallicities have been found in a dwarf spheroidal galaxy. No evidence for over-abundances of Ca and Ti are found in these five stars, though the measurements for these elements are less certain. Possible mechanisms to produce low Mg/Fe ratios, with respect to that of Galactic halo stars, are discussed. (3) Ba is under-abundant in four objects, while the remaining two stars exhibit large and moderate excesses of this element. The abundance distribution of Ba in this galaxy is similar to that in the Galactic halo, indicating that the enrichment of heavy elements, probably by the r-process, started at metallicities [Fe/H] < -2.5, as found in the Galactic halo.Comment: 15 pages, 6 figures, 6 tables, A&A, in pres

    Two New LBV Candidates in the M33 Galaxy

    Full text link
    We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars (Valeev et al. 2010) as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. (2006) catalog based on the following criteria: emission in Halpha, V<18.5 and 0.35<(B-V)<1.2. The spectra of both stars reveal a broad and strong Halpha emission with extended wings (770 and 1000 km/s). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/Lsun)=6.0-6.2 with the value of interstellar extinction Av=2.3+-0.1. The temperature of the star's photosphere is estimated as Tstar~13000-15000K its probable mass on the Zero Age Main Sequence is M~60-80Msun. The infrared excess in N45901 corresponds to the emission of warm dust with the temperature Twarm~1000K, and amounts to 0.1% of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/Lsun)=6.3-6.6, the value of interstellar extinction is Av=2.75+-0.15. We estimate its photosphere's temperature as Tstar~13000-16000K, the initial mass as M~90-120Msun. The infrared excess in N125093 amounts to 5-6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm~1000K and Tcold~480K. The [CaII] lines (7291A and 7323A), observed in LBV-like stars VarA and N93351 in M33, are also present in the spectrum of N125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad Halpha emissions allow classifying the studied objects as LBV candidates.Comment: 14 pages, 4 figure

    The Missing Luminous Blue Variables and the Bistability Jump

    Get PDF
    We discuss an interesting feature of the distribution of luminous blue variables on the H-R diagram, and we propose a connection with the bistability jump in the winds of early-type supergiants. There appears to be a deficiency of quiescent LBVs on the S Dor instability strip at luminosities between log L/Lsun = 5.6 and 5.8. The upper boundary, is also where the temperature-dependent S Dor instability strip intersects the bistability jump at about 21,000 K. Due to increased opacity, winds of early-type supergiants are slower and denser on the cool side of the bistability jump, and we postulate that this may trigger optically-thick winds that inhibit quiescent LBVs from residing there. We conduct numerical simulations of radiation-driven winds for a range of temperatures, masses, and velocity laws at log L/Lsun=5.7 to see what effect the bistability jump should have. We find that for relatively low stellar masses the increase in wind density at the bistability jump leads to the formation of a modest to strong pseudo photosphere -- enough to make an early B-type star appear as a yellow hypergiant. Thus, the proposed mechanism will be most relevant for LBVs that are post-red supergiants. Yellow hypergiants like IRC+10420 and rho Cas occupy the same luminosity range as the ``missing'' LBVs, and show apparent temperature variations at constant luminosity. If these yellow hypergiants do eventually become Wolf-Rayet stars, we speculate that they may skip the normal LBV phase, at least as far as their apparent positions on the HR diagram are concerned.Comment: 20 pages, 4 figs, accepted by Ap

    New measurements of magnetic fields of roAp stars with FORS1 at the VLT

    Full text link
    Magnetic fields play a key role in the pulsations of rapidly oscillating Ap (roAp) stars since they are a necessary ingredient of all pulsation excitation mechanisms proposed so far. This implies that the proper understanding of the seismological behaviour of the roAp stars requires knowledge of their magnetic fields. However, the magnetic fields of the roAp stars are not well studied. Here we present new results of measurements of the mean longitudinal field of 14 roAp stars obtained from low resolution spectropolarimetry with FORS1 at the VLT.Comment: 5 pages, accepted for publication in A&

    A wide angle view of the Sagittarius dwarf Spheroidal Galaxy. I: VIMOS photometry and radial velocities across Sgr dSph major and minor axis

    Full text link
    The Sagittarius dwarf Spheroidal Galaxy (Sgr dSph) provides us with a unique possibility of studying a dwarf galaxy merging event while still in progress. Due to its low distance (25 kpc), the main body of Sgr dSph covers a vast area in the sky (roughly 15 x 7 degrees). Available photometric and spectroscopic studies have concentrated either on the central part of the galaxy or on the stellar stream, but the overwhelming majority of the galaxy body has never been probed. The aim of the present study is twofold. On the one hand, to produce color magnitude diagrams across the extension of Sgr dSph to study its stellar populations, searching for age and/or composition gradients (or lack thereof). On the other hand, to derive spectroscopic low-resolution radial velocities for a subsample of stars to determine membership to Sgr dSph for the purpose of high resolution spectroscopic follow-up. We used VIMOS-VLT to produce V and I photometry and spectroscopy on 7 fields across the Sgr dSph minor and major axis, plus 3 more centered on the associated globular clusters Terzan 7, Terzan 8 and Arp 2. A last field has been centered on M 54, lying in the center of Sgr dSph. We present photometry for 320,000 stars across the main body of Sgr dSph, one of the richest, and safely the most wide-angle sampling ever produced for this fundamental object. We also provide robust memberships for more than one hundred stars, whose high resolution spectroscopic analysis will be the object of forthcoming papers. Sgr dSph appears remarkably uniform among the observed fields. We confirm the presence of a main Sgr dSph population characterized roughly by the same metallicity of 47 Tuc, but we also found the presence of multiple populations on the peripheral fields of the galaxy, with a metallicity spanning from [Fe/H]=-2.3 to a nearly solar value.Comment: 10 pages, 12 figures, accepted for publication in A&
    corecore