1,476 research outputs found

    Synchronization of the CMS muon detector

    Get PDF
    Precise synchronization is crucial for the functioning of the CMS Muon Detector. In this paper we first discuss the possible sources of data misalignment, like variations in particle time of flight, signal formation and propagation within a detector ( e.g. drift time), connections between various elements, set-up times and jitters of digital electronics. Then we review several methods which can be used to synchronize the system for the first time and to maintain the synchronization over a long period of time. Finally we discuss in detail a possible application of those methods to the Resistive Plate Chambers. We also briefly discuss the cases of Drift Tubes and Cathode Strip Chambers

    Discovering New Particles at Colliders

    Get PDF
    We summarize the activities of the New Particles Subgroup at the 1996 Snowmass Workshop. We present the expectations for discovery or exclusion of leptoquarks at hadron and lepton colliders in the pair production and single production modes. The indirect detection of a scalar lepton quark at polarized e+ee^+e^- and μ+μ\mu^+\mu^- colliders is discussed. The discovery prospects for particles with two units of lepton number is discussed. We summarize the analysis of the single production of neutral heavy leptons at lepton colliders

    Discovery Potential for New Phenomena

    Get PDF
    We examine the ability of future facilities to discover and interpret non-supersymmetric new phenomena. We first explore explicit manifestations of new physics, including extended gauge sectors, leptoquarks, exotic fermions, and technicolor models. We then take a more general approach where new physics only reveals itself through the existence of effective interactions at lower energy scales. [Summary Report of the New Phenomena Working Group. To appear in the Proceedings of the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics - Snowmass96, Snowmass, CO, 25 June - 12 July 1996.

    The Gravitino-Stau Scenario after Catalyzed BBN

    Full text link
    We consider the impact of Catalyzed Big Bang Nucleosynthesis on theories with a gravitino LSP and a charged slepton NLSP. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated SUSY breaking, we derive a lower bound on the gaugino mass parameter m_1/2. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.Comment: 1+14 pages, 6 figures; v2: minor clarifications, 1 reference added, matches version to appear in JCA

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO

    GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Full text link
    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate γ\gamma-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic Vision 2010; 25 p., 25 figs; see also www.grips-mission.e

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore