2,694 research outputs found
Fitting theories of nuclear binding energies
In developing theories of nuclear binding energy such as density-functional
theory, the effort required to make a fit can be daunting due to the large
number of parameters that may be in the theory and the large number of nuclei
in the mass table. For theories based on the Skyrme interaction, the effort can
be reduced considerably by using the singular value decomposition to reduce the
size of the parameter space. We find that the sensitive parameters define a
space of dimension four or so, and within this space a linear refit is adequate
for a number of Skyrme parameters sets from the literature. We do not find
marked differences in the quality of the fit between the SLy4, the Bky4 and SkP
parameter sets. The r.m.s. residual error in even-even nuclei is about 1.5 MeV,
half the value of the liquid drop model. We also discuss an alternative norm
for evaluating mass fits, the Chebyshev norm. It focuses attention on the cases
with the largest discrepancies between theory and experiment. We show how it
works with the liquid drop model and make some applications to models based on
Skyrme energy functionals. The Chebyshev norm seems to be more sensitive to new
experimental data than the root-mean-square norm. The method also has the
advantage that candidate improvements to the theories can be assessed with
computations on smaller sets of nuclei.Comment: 17 pages and 4 figures--version encorporates referee's comment
Local perspectives on weirs in the Upper Nepean
The Independent Expert Panel of the HawkesburyâNepean River Management Forum commissioned the Institute for Sustainable Futures to conduct research into the values held by river users and community members in relation to the weirs on the Upper Nepean River and concerns they would have with any change to the current situation. The weirs at the centre of this research are Bergins, Thurns, Sharpes and Brownlow Hill. The research questions guiding the project are: What is the nature of the social and economic relationship between people and weirs at a local level In what ways would people want to participate in decisions about the weirs and river management Local people were asked about how they use the weirs, what value they see the weirs having for their community, culture and industry and what concerns there may be about potential changes. The research aims to help the Expert Panel and the Forum make appropriate decisions about potential retention, modification or removal of the weirs and the fishways associated with them. A further aim is to facilitate public participation in the decision-making process. Within any community, there are different individuals and groups with diverse interests and experiences. These differences might result in multiple perspectives between and within groups. To differentiate some of these perspectives, the broader community was divided into four sectors: general public, community groups, identifiable water users such as irrigators and recreational users and Indigenous groups. The general public participants emphasised the aesthetic and leisure value of the river. They appear to identify very strongly with the river, with participants interpreting the existence of the weirs as integral to both the riverâs survival and the ongoing economic survival of the region. The findings indicate that this group view the weirs as an integral part of the river and the river as an integral part of the Camden community
Tropical range extension for the temperate, endemic South-Eastern Australian Nudibranch Goniobranchus splendidus (Angas, 1864)
In contrast to many tropical animals expanding southwards on the Australian coast concomitant with climate change, here we report a temperate endemic newly found in the tropics. Chromodorid nudibranchs are bright, colourful animals that rarely go unnoticed by divers and underwater photographers. The discovery of a new population, with divergent colouration is therefore significant. DNA sequencing confirms that despite departures from the known phenotypic variation, the specimen represents northern Goniobranchus splendidus and not an unknown close relative. Goniobranchus tinctorius represents the sister taxa to G. splendidus. With regard to secondary defences, the oxygenated terpenes found previously in this specimen are partially unique but also overlap with other G. splendidus from southern Queensland (QLD) and New South Wales (NSW). The tropical specimen from Mackay contains extracapsular yolk like other G. splendidus. This previously unknown tropical population may contribute selectively advantageous genes to cold-water species threatened by climate change. Competitive exclusion may explain why G. splendidus does not strongly overlap with its widespread sister taxon
First-Order Provenance Games
We propose a new model of provenance, based on a game-theoretic approach to
query evaluation. First, we study games G in their own right, and ask how to
explain that a position x in G is won, lost, or drawn. The resulting notion of
game provenance is closely related to winning strategies, and excludes from
provenance all "bad moves", i.e., those which unnecessarily allow the opponent
to improve the outcome of a play. In this way, the value of a position is
determined by its game provenance. We then define provenance games by viewing
the evaluation of a first-order query as a game between two players who argue
whether a tuple is in the query answer. For RA+ queries, we show that game
provenance is equivalent to the most general semiring of provenance polynomials
N[X]. Variants of our game yield other known semirings. However, unlike
semiring provenance, game provenance also provides a "built-in" way to handle
negation and thus to answer why-not questions: In (provenance) games, the
reason why x is not won, is the same as why x is lost or drawn (the latter is
possible for games with draws). Since first-order provenance games are
draw-free, they yield a new provenance model that combines how- and why-not
provenance
A dependent nominal type theory
Nominal abstract syntax is an approach to representing names and binding
pioneered by Gabbay and Pitts. So far nominal techniques have mostly been
studied using classical logic or model theory, not type theory. Nominal
extensions to simple, dependent and ML-like polymorphic languages have been
studied, but decidability and normalization results have only been established
for simple nominal type theories. We present a LF-style dependent type theory
extended with name-abstraction types, prove soundness and decidability of
beta-eta-equivalence checking, discuss adequacy and canonical forms via an
example, and discuss extensions such as dependently-typed recursion and
induction principles
Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices
Super-resolution is a fundamental task in imaging, where the goal is to
extract fine-grained structure from coarse-grained measurements. Here we are
interested in a popular mathematical abstraction of this problem that has been
widely studied in the statistics, signal processing and machine learning
communities. We exactly resolve the threshold at which noisy super-resolution
is possible. In particular, we establish a sharp phase transition for the
relationship between the cutoff frequency () and the separation ().
If , our estimator converges to the true values at an inverse
polynomial rate in terms of the magnitude of the noise. And when no estimator can distinguish between a particular pair of
-separated signals even if the magnitude of the noise is exponentially
small.
Our results involve making novel connections between {\em extremal functions}
and the spectral properties of Vandermonde matrices. We establish a sharp phase
transition for their condition number which in turn allows us to give the first
noise tolerance bounds for the matrix pencil method. Moreover we show that our
methods can be interpreted as giving preconditioners for Vandermonde matrices,
and we use this observation to design faster algorithms for super-resolution.
We believe that these ideas may have other applications in designing faster
algorithms for other basic tasks in signal processing.Comment: 19 page
Negative thermal expansion of MgB in the superconducting state and anomalous behavior of the bulk Gr\"uneisen function
The thermal expansion coefficient of MgB is revealed to change
from positive to negative on cooling through the superconducting transition
temperature . The Gr\"uneisen function also becomes negative at
followed by a dramatic increase to large positive values at low temperature.
The results suggest anomalous coupling between superconducting electrons and
low-energy phonons.Comment: 5 figures. submitted to Phys. Rev. Let
Compact Nuclei in Galaxies at Moderate Redshift:II. Their Nature and Implications for the AGN Luminosity Function
This study explores the space density and properties of active galaxies to
z=0.8. We have investigated the frequency and nature of unresolved nuclei in
galaxies at moderate redshift as indicators of nuclear activity such as Active
Galactic Nuclei (AGN) or starbursts. Candidates are selected by fitting imaged
galaxies with multi-component models using maximum likelihood estimate
techniques to determine the best model fit. We select those galaxies requiring
an unresolved point-source component in the galaxy nucleus, in addition to a
disk and/or bulge component, to adequately model the galaxy light. We have
searched 70 WFPC2 images primarily from the Medium Deep Survey for galaxies
containing compact nuclei. In our survey of 1033 galaxies, the fraction
containing an unresolved nuclear component greater than 5% of the total galaxy
light is 9+/-1% corrected for incompleteness. In this second of two papers in
this series, we discuss the nature of the compact nuclei and their hosts.
We present the upper limit luminosity function (LF) for low-luminosity AGN
(LLAGN) in two redshift bins to z=0.8. Mild number density evolution is
detected for nuclei at -18 -16
and this flatness, combined with the increase in number density, is
inconsistent with pure luminosity evolution. Based on the amount of density
evolution observed for these objects, we find that almost all present-day
spiral galaxies could have hosted a LLAGN at some point in their lives. We also
comment on the likely contribution of these compact nuclei to the soft X-ray
background.Comment: 50 pages, 14 figures, to appear in ApJ, April 199
Recommended from our members
Improving the condition number of estimated covariance matrices
High dimensional error covariance matrices and their inverses are used to weight the
contribution of observation and background information in data assimilation procedures. As
observation error covariance matrices are often obtained by sampling methods, estimates are
often degenerate or ill-conditioned, making it impossible to invert an observation error
covariance matrix without the use of techniques to reduce its condition number. In this paper
we present new theory for two existing methods that can be used to ‘recondition’ any covariance
matrix: ridge regression, and the minimum eigenvalue method. We compare these methods
with multiplicative variance inflation, which cannot alter the condition number of a matrix, but
is often used to account for neglected correlation information. We investigate the impact of
reconditioning on variances and correlations of a general covariance matrix in both a theoretical
and practical setting. Improved theoretical understanding provides guidance to users regarding
method selection, and choice of target condition number. The new theory shows that, for the
same target condition number, both methods increase variances compared to the original
matrix, with larger increases for ridge regression than the minimum eigenvalue method. We
prove that the ridge regression method strictly decreases the absolute value of off-diagonal
correlations. Theoretical comparison of the impact of reconditioning and multiplicative
variance inflation on the data assimilation objective function shows that variance inflation alters
information across all scales uniformly, whereas reconditioning has a larger effect on scales
corresponding to smaller eigenvalues. We then consider two examples: a general correlation
function, and an observation error covariance matrix arising from interchannel correlations. The
minimum eigenvalue method results in smaller overall changes to the correlation matrix than
ridge regression, but can increase off-diagonal correlations. Data assimilation experiments reveal
that reconditioning corrects spurious noise in the analysis but underestimates the true signal
compared to multiplicative variance inflation
Positive approximations of the inverse of fractional powers of SPD M-matrices
This study is motivated by the recent development in the fractional calculus
and its applications. During last few years, several different techniques are
proposed to localize the nonlocal fractional diffusion operator. They are based
on transformation of the original problem to a local elliptic or
pseudoparabolic problem, or to an integral representation of the solution, thus
increasing the dimension of the computational domain. More recently, an
alternative approach aimed at reducing the computational complexity was
developed. The linear algebraic system , is considered, where is a properly normalized (scalded) symmetric
and positive definite matrix obtained from finite element or finite difference
approximation of second order elliptic problems in ,
. The method is based on best uniform rational approximations (BURA)
of the function for and natural .
The maximum principles are among the major qualitative properties of linear
elliptic operators/PDEs. In many studies and applications, it is important that
such properties are preserved by the selected numerical solution method. In
this paper we present and analyze the properties of positive approximations of
obtained by the BURA technique. Sufficient conditions for
positiveness are proven, complemented by sharp error estimates. The theoretical
results are supported by representative numerical tests
- …
