1,321 research outputs found
Communications and sensing of illumination contributions in a power led lighting system
Abstract — In recent years, LED technology emerged as a prime candidate for the future illumination light source, due to high energy efficiency and long life time. In addition, LEDs offer a superior flexibility in terms of colors and shapes, which leads to a potentially infinite variety of available light patterns. In order to create these patterns via easy user interaction, we need to sense the local light contribution of each LED. This measurement could be enabled through tagging of the light of each LED with unique embedded IDs. To this end, we propose a new modulation and multiple access scheme, named as codetime division multiple access- pulse position modulation (CTDMA-PPM): a form of PPM which is keyed according to a spreading sequence, and in which the duty cycle is subject to pulse width modulation (PWM) according to the required lighting setting. Our scheme considers illumination constraints in addition to the communication requirements and, to our best knowledge, it has not been addressed by other optical modulation methods. Based on the proposed modulation method and multiple access schemes, we develop a system structure, which includes illumination sources, a sensor receiver and a control system. Illumination sources illuminate the environment and transmit information, simultaneously. According to our theoretical analysis, this system structure could support a number of luminaries equal to the size of the CDMA codebook times the dimming range. I
Solar flare prediction using advanced feature extraction, machine learning and feature selection
YesNovel machine-learning and feature-selection algorithms have been developed to study: (i)
the flare prediction capability of magnetic feature (MF) properties generated by the recently developed
Solar Monitor Active Region Tracker (SMART); (ii) SMART's MF properties that are most significantly
related to flare occurrence. Spatio-temporal association algorithms are developed to associate MFs
with flares from April 1996 to December 2010 in order to differentiate flaring and non-flaring MFs and
enable the application of machine learning and feature selection algorithms. A machine-learning
algorithm is applied to the associated datasets to determine the flare prediction capability of all 21
SMART MF properties. The prediction performance is assessed using standard forecast verification
measures and compared with the prediction measures of one of the industry's standard technologies
for flare prediction that is also based on machine learning - Automated Solar Activity Prediction (ASAP).
The comparison shows that the combination of SMART MFs with machine learning has the potential to
achieve more accurate flare prediction than ASAP. Feature selection algorithms are then applied to
determine the MF properties that are most related to flare occurrence. It is found that a reduced set of
6 MF properties can achieve a similar degree of prediction accuracy as the full set of 21 SMART MF
properties
The inhibition of FGF receptor 1 activity mediates sorafenib-induced antiproliferative effects in human mesothelioma tumor-initiating cells
Tumor-initiating cells (TICs), the subset of cells within tumors endowed with stem-like features, being highly resistant to conventional cytotoxic drugs, are the major cause of tumor relapse. The identification of molecules able to target TICs remains a significant challenge in cancer therapy. Using TIC-enriched cultures (MM1, MM3 and MM4), from 3 human malignant pleural mesotheliomas (MPM), we tested the effects of sorafenib on cell survival and the intracellular mechanisms involved. Sorafenib inhibited cell-cycle progression in all the TIC cultures, but only in MM3 and MM4 cells this effect was associated with induction of apoptosis via the down-regulation of Mcl-1. Although sorafenib inhibits the activity of several tyrosine kinases, its effects are mainly ascribed to Raf inhibition. To investigate the mechanisms of sorafenib-mediated antiproliferative activity, TICs were treated with EGF or bFGF causing, in MM3 and MM4 cells, MEK, ERK1/2, Akt and STAT3 phosphorylation. These effects were significantly reduced by sorafenib in bFGF-treated cells, while a slight inhibition occurred after EGF stimulation, suggesting that sorafenib effects are mainly due to FGFR inhibition. Indeed, FGFR1 phosphorylation was inhibited by sorafenib.
A different picture was observed in MM1 cells, which, releasing high levels of bFGF, showed an autocrine activation of FGFR1 and a constitutive phosphorylation/activation of MEK-ERK1/2. A powerful inhibitory response to sorafenib was observed in these cells, indirectly confirming the central role of sorafenib as FGFR inhibitor.
These results suggest that bFGF signaling may impact antiproliferative response to sorafenib of MPM TICs, which is mainly mediated by a direct FGFR targeting
The numerical and experimental analysis of forced convection on the surfaces of a rectangular box with heat generation
Paper presented at the 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 30 June - 2 July, 2008.The system development with experimental studies that is
accomplished by trial and error method is neither practical nor
economical since it is difficult and expensive. So that, creating
the mathematical model and determining the most appropriate
design data by using numerical solutions is a more effective
and cheaper approach for the system development. In this study
numerical and experimental analysis of forced convection heat
transfer from the horizontal and lateral surfaces of a 0.3m x
0.3m x 0.52m rectangular box in a 0.55m x 0.55m x 3m wind
tunnel, which is heated by a 0.5m length cylindrical 450 W
power source with a constant surface temperature of 200ºC,
was performed. The temperature distribution on all exterior
sides of rectangular box subjected to forced convection, were
calculated by finite volume numerical analysis and compared
with the results obtained from the experimental measurements.
The main objective of this study is to verify the mathematical
model which was constituted for the numerical solution. The
results obtained from the numerical analysis were
approximately similar to the ones obtained in experimental
analysis, so the mathematical model was verified.vk201
A comparison of flare forecasting methods, I: results from the “All-clear” workshop
YesSolar flares produce radiation which can have an almost immediate effect on the near-Earth environ-
ment, making it crucial to forecast flares in order to mitigate their negative effects. The number of
published approaches to flare forecasting using photospheric magnetic field observations has prolifer-
ated, with varying claims about how well each works. Because of the different analysis techniques and
data sets used, it is essentially impossible to compare the results from the literature. This problem
is exacerbated by the low event rates of large solar flares. The challenges of forecasting rare events
have long been recognized in the meteorology community, but have yet to be fully acknowledged
by the space weather community. During the interagency workshop on “all clear” forecasts held in
Boulder, CO in 2009, the performance of a number of existing algorithms was compared on common
data sets, specifically line-of-sight magnetic field and continuum intensity images from MDI, with
consistent definitions of what constitutes an event. We demonstrate the importance of making such
systematic comparisons, and of using standard verification statistics to determine what constitutes
a good prediction scheme. When a comparison was made in this fashion, no one method clearly
outperformed all others, which may in part be due to the strong correlations among the parameters
used by different methods to characterize an active region. For M-class flares and above, the set of
methods tends towards a weakly positive skill score (as measured with several distinct metrics), with
no participating method proving substantially better than climatological forecasts.This work is the outcome of many collaborative and cooperative efforts. The 2009 “Forecasting the All-Clear” Workshop in Boulder, CO was sponsored by NASA/Johnson Space Flight Center’s Space Radiation Analysis Group, the National Center for Atmospheric Research, and the NOAA/Space Weather Prediction Center, with additional travel support for participating scientists from NASA LWS TRT NNH09CE72C to NWRA. The authors thank the participants of that workshop, in particular Drs. Neal Zapp, Dan Fry, Doug Biesecker, for the informative discussions during those three crazy days, and NCAR’s Susan Baltuch and NWRA’s Janet Biggs for organizational prowess. Workshop preparation and analysis support was provided for GB, KDL by NASA LWS TRT NNH09CE72C, and NASA Heliophysics GI NNH12CG10C. PAH and DSB received funding from the European Space Agency PRODEX Programme, while DSB and MKG also received funding from the European Union’s Horizon 2020 research and in- novation programme under grant agreement No. 640216 (FLARECAST project). MKG also acknowledges research performed under the A-EFFort project and subsequent service implementation, supported under ESA Contract number 4000111994/14/D/MPR. YY was supported by the National Science Foundation under grants ATM 09-36665, ATM 07-16950, ATM-0745744 and by NASA under grants NNX0-7AH78G, NNXO-8AQ90G. YY owes his deepest gratitude to his advisers Prof. Frank Y. Shih, Prof. Haimin Wang and Prof. Ju Jing for long discussions, for reading previous drafts of his work and providing many valuable comments that improved the presentation and contents of this work. JMA was supported by NSF Career Grant AGS-1255024 and by a NMSU Vice President for Research Interdisciplinary Research Grant
Switching Frequency Effects on the Efficiency and Harmonic Distortion in a Three-Phase Five-Level CHBMI Prototype with Multicarrier PWM Schemes: Experimental Analysis
The current climatic scenario requires the use of innovative solutions to increase the production of electricity from renewable energy sources. Multilevel Power Inverters are a promising solution to improve the penetration of renewable energy sources into the electrical grid. Moreover, the performance of MPIs is a function of the modulation strategy employed and of its features (modulation index and switching frequency). This paper presents an extended and experimental analysis of three-phase five-level Cascaded H-Bridges Multilevel Inverter performance in terms of efficiency and harmonic content considering several MC PWM modulation strategies. In detail, the CHBMI performance is analyzed by varying the modulation index and the switching frequency. For control purposes, the NI System On Module sbRIO-9651 control board, a dedicated FPGA-based control board for power electronics and drive applications programmable in the LabVIEW environment, is used. The paper describes the modulation strategies implementation, the test bench set-up, and the experimental investigations carried out. The results obtained in terms of Total Harmonic Distorsion (THD) and efficiency are analyzed, compared, and discussed
COASTLINE ZONE EXTRACTION USING LANDSAT-8 OLI IMAGERY, CASE STUDY: BODRUM PENINSULA, TURKEY
Coastline extraction is a fundamental work for coastal resource management and coastal environmental protection. Today, by using digital image processing techniques, coastline extraction can be done with remote sensing imagery systems. In this study, Landsat 8 Operational Land Imagery (OLI) data have been the main data source due to free access and sufficient spatial resolution for coast line extraction. This research is focused on determining the coastline length and measuring land area by using Landsat 8 OLI satellite image for Bodrum Peninsula, Turkey. Three commonly used methods have been applied in order to determine sea-land boundary line and its length, and area of the study area. The Automatic Water Extraction Index (AWEI), Iterative Self-Organizing Data Analysis Technique (ISODATA) unsupervised classification technique and on screen digitizing method was chosen for identification of coastal boundaries. Results of coastline length and land areas of Bodrum by using AWEI, ISODATA and on-screen digitizing are compared with each other. This study shows that with using optimal threshold value, AWEI can be used for coast line extraction method with coherently for Landsat 8 OLI satellite imagery. The overall results show that coastline extraction from satellite imagery can be done with sufficient accuracy using spectral water indices instead of time consuming on-screen digitizing
Bilateral Talus and Navicular Fractures accompanied with Unilateral Calcaneal Fracture: A Case Report
An 18-year old male patient, with a history of paragliding accident, sustaining a coronal shear fracture of the body of the talus, an anterior process fracture of the calcaneus extending to the calcaneocuboid joint and a nondisplaced navicular body fracture at the right foot and a displaced fracture of the navicular body accompanied with posteromedial process fracture of the talus at the left side was referred to our emergency clinic. For the right foot, the coronal plane fracture of the talar body was anatomically reduced and fixed with screws. For the left foot, screw fixation was performed through the lateral aspect to fix the large posteromedial fragment. Small bone fragments were removed from the left navicular fracture, and the main fragments were also fixed with screw. The talo-navicular joint was stabilised with a Kirschner wire. At 36 months follow-up, bilateral foot and ankle functions were satisfactory, Maryland scores of the right and left foot were 85 (good) and 90 (excellent), respectively, and the patient regained his full activity level by the 5th month postoperatively. With reference to the number and types of fractures in this one patient, we present a standard protocol for treatment of isolated talus, navicular and calcaneal fractures presenting together in a single foot injury
The Origin, Early Evolution and Predictability of Solar Eruptions
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
The extreme HBL behaviour of Markarian 501 during 2012
A multiwavelength campaign was organized to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of 0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was 3 CU, and the peak of the high-energy spectral component was found to be at 2 TeV. This study reports very hard X-ray spectra, and the hardest VHE spectra measured to date for Mrk 501. The fractional variability was found to increase with energy, with the highest variability occurring at VHE, and a significant correlation between the X-ray and VHE bands. The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5 keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency- peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The one-zone synchrotron self-Compton (SSC) scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behaviour seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays
- …
