1,667 research outputs found
Non-archimedean Yomdin-Gromov parametrizations and points of bounded height
We prove an analogue of the Yomdin-Gromov Lemma for -adic definable sets
and more broadly in a non-archimedean, definable context. This analogue keeps
track of piecewise approximation by Taylor polynomials, a nontrivial aspect in
the totally disconnected case. We apply this result to bound the number of
rational points of bounded height on the transcendental part of -adic
subanalytic sets, and to bound the dimension of the set of complex polynomials
of bounded degree lying on an algebraic variety defined over , in analogy to results by Pila and Wilkie, resp. by Bombieri and Pila.
Along the way we prove, for definable functions in a general context of
non-archimedean geometry, that local Lipschitz continuity implies piecewise
global Lipschitz continuity.Comment: 54 pages; revised, section 5.6 adde
On the total curvatures of a tame function
Given a definable function f, enough differentiable, we study the continuity
of the total curvature function t --> K(t), total curvature of the level {f=t},
and the total absolute curvature function t-->|K| (t), total absolute curvature
of the level {f=t}. We show they admits at most finitely many discontinuities
Adaptive estimation of the hazard rate with multiplicative censoring
We propose an adaptive estimation procedure of the hazard rate of a random variable X in the multiplicative censoring model, Y = XU , with U ∼ U([0, 1]) independent of X. The variable X is not directly observed: an estimator is built from a sample {Y1, ..., Yn} of copies of Y. It is obtained by minimisation of a contrast function over a class of general nested function spaces which can be generated e.g. by splines functions. The dimension of the space is selected by a penalised contrast criterion. The final estimator is proved to achieve the best bias-variance compromise and to reach the same convergence rate as the oracle estimator under conditions on the maximal dimension. The good behavior of the resulting estimator is illustrated over a simulation study
The Physical Conditions and Dynamics of the Interstellar Medium in the Nucleus of M83: Observations of CO and CI
This paper presents CI, CO J=4-3, and CO J=3-2 maps of the barred spiral
galaxy M83 taken at the James Clerk Maxwell Telescope. Observations indicate a
double peaked structure which is consistent with gas inflow along the bar
collecting at the inner Lindblad resonance. This structure suggests that
nuclear starbursts can occur even in galaxies where this inflow/collection
occurs, in contrast to previous studies of barred spiral galaxies. However, the
observations also suggest that the double peaked emission may be the result of
a rotating molecular ring oriented nearly perpendicular to the main disk of the
galaxy. The CO J=4-3 data indicate the presence of warm gas in the nucleus that
is not apparent in the lower-J CO observations, which suggests that CO J=1-0
emission may not be a reliable tracer of molecular gas in starburst galaxies.
The twelve CI/CO J=4-3 line ratios in the inner 24'' x 24'' are uniform at the
2 sigma level, which indicates that the CO J=4-3 emission is originating in the
same hot photon-dominated regions as the CI emission. The CO J=4-3/J=3-2 line
ratios vary significantly within the nucleus with the higher line ratios
occurring away from peaks of emission along an arc of active star forming
regions. These high line ratios (>1) likely indicate optically thin gas created
by the high temperatures caused by star forming regions in the nucleus of this
starburst galaxy.Comment: 15 pages with 10 figures. To appear in the August 10 1998 issue of
The Astrophysical Journa
Spin noise spectroscopy to probe quantum states of ultracold fermionic atomic gases
Ultracold alkali atoms provide experimentally accessible model systems for
probing quantum states that manifest themselves at the macroscopic scale.
Recent experimental realizations of superfluidity in dilute gases of ultracold
fermionic (half-integer spin) atoms offer exciting opportunities to directly
test theoretical models of related many-body fermion systems that are
inaccessible to experimental manipulation, such as neutron stars and
quark-gluon plasmas. However, the microscopic interactions between fermions are
potentially quite complex, and experiments in ultracold gases to date cannot
clearly distinguish between the qualitatively different microscopic models that
have been proposed. Here, we theoretically demonstrate that optical
measurements of electron spin noise -- the intrinsic, random fluctuations of
spin -- can probe the entangled quantum states of ultracold fermionic atomic
gases and unambiguously reveal the detailed nature of the interatomic
interactions. We show that different models predict different sets of
resonances in the noise spectrum, and once the correct effective interatomic
interaction model is identified, the line-shapes of the spin noise can be used
to constrain this model. Further, experimental measurements of spin noise in
classical (Boltzmann) alkali vapors are used to estimate the expected signal
magnitudes for spin noise measurements in ultracold atom systems and to show
that these measurements are feasible
Adaptive density estimation for stationary processes
We propose an algorithm to estimate the common density of a stationary
process . We suppose that the process is either or
-mixing. We provide a model selection procedure based on a generalization
of Mallows' and we prove oracle inequalities for the selected estimator
under a few prior assumptions on the collection of models and on the mixing
coefficients. We prove that our estimator is adaptive over a class of Besov
spaces, namely, we prove that it achieves the same rates of convergence as in
the i.i.d framework
Spin degree of freedom in two dimensional exciton condensates
We present a theoretical analysis of a spin-dependent multicomponent
condensate in two dimensions. The case of a condensate of resonantly
photoexcited excitons having two different spin orientations is studied in
detail. The energy and the chemical potentials of this system depend strongly
on the spin polarization . When electrons and holes are located in two
different planes, the condensate can be either totally spin polarized or spin
unpolarized, a property that is measurable. The phase diagram in terms of the
total density and electron-hole separation is discussed.Comment: 4 pages, 3 figures, Accepted for publication in Physical Review
Letter
Fluctuations in the Irreversible Decay of Turbulent Energy
A fluctuation law of the energy in freely-decaying, homogeneous and isotropic
turbulence is derived within standard closure hypotheses for 3D incompressible
flow. In particular, a fluctuation-dissipation relation is derived which
relates the strength of a stochastic backscatter term in the energy decay
equation to the mean of the energy dissipation rate. The theory is based on the
so-called ``effective action'' of the energy history and illustrates a
Rayleigh-Ritz method recently developed to evaluate the effective action
approximately within probability density-function (PDF) closures. These
effective actions generalize the Onsager-Machlup action of nonequilibrium
statistical mechanics to turbulent flow. They yield detailed, concrete
predictions for fluctuations, such as multi-time correlation functions of
arbitrary order, which cannot be obtained by direct PDF methods. They also
characterize the mean histories by a variational principle.Comment: 26 pages, Latex Version 2.09, plus seceq.sty, a stylefile for
sequential numbering of equations by section. This version includes new
discussion of the physical interpretation of the formal Rayleigh-Ritz
approximation. The title is also change
- …
