1,667 research outputs found

    Non-archimedean Yomdin-Gromov parametrizations and points of bounded height

    Full text link
    We prove an analogue of the Yomdin-Gromov Lemma for pp-adic definable sets and more broadly in a non-archimedean, definable context. This analogue keeps track of piecewise approximation by Taylor polynomials, a nontrivial aspect in the totally disconnected case. We apply this result to bound the number of rational points of bounded height on the transcendental part of pp-adic subanalytic sets, and to bound the dimension of the set of complex polynomials of bounded degree lying on an algebraic variety defined over C((t))\mathbb{C} ((t)), in analogy to results by Pila and Wilkie, resp. by Bombieri and Pila. Along the way we prove, for definable functions in a general context of non-archimedean geometry, that local Lipschitz continuity implies piecewise global Lipschitz continuity.Comment: 54 pages; revised, section 5.6 adde

    On the total curvatures of a tame function

    Full text link
    Given a definable function f, enough differentiable, we study the continuity of the total curvature function t --> K(t), total curvature of the level {f=t}, and the total absolute curvature function t-->|K| (t), total absolute curvature of the level {f=t}. We show they admits at most finitely many discontinuities

    Adaptive estimation of the hazard rate with multiplicative censoring

    Get PDF
    We propose an adaptive estimation procedure of the hazard rate of a random variable X in the multiplicative censoring model, Y = XU , with U ∼ U([0, 1]) independent of X. The variable X is not directly observed: an estimator is built from a sample {Y1, ..., Yn} of copies of Y. It is obtained by minimisation of a contrast function over a class of general nested function spaces which can be generated e.g. by splines functions. The dimension of the space is selected by a penalised contrast criterion. The final estimator is proved to achieve the best bias-variance compromise and to reach the same convergence rate as the oracle estimator under conditions on the maximal dimension. The good behavior of the resulting estimator is illustrated over a simulation study

    The Physical Conditions and Dynamics of the Interstellar Medium in the Nucleus of M83: Observations of CO and CI

    Get PDF
    This paper presents CI, CO J=4-3, and CO J=3-2 maps of the barred spiral galaxy M83 taken at the James Clerk Maxwell Telescope. Observations indicate a double peaked structure which is consistent with gas inflow along the bar collecting at the inner Lindblad resonance. This structure suggests that nuclear starbursts can occur even in galaxies where this inflow/collection occurs, in contrast to previous studies of barred spiral galaxies. However, the observations also suggest that the double peaked emission may be the result of a rotating molecular ring oriented nearly perpendicular to the main disk of the galaxy. The CO J=4-3 data indicate the presence of warm gas in the nucleus that is not apparent in the lower-J CO observations, which suggests that CO J=1-0 emission may not be a reliable tracer of molecular gas in starburst galaxies. The twelve CI/CO J=4-3 line ratios in the inner 24'' x 24'' are uniform at the 2 sigma level, which indicates that the CO J=4-3 emission is originating in the same hot photon-dominated regions as the CI emission. The CO J=4-3/J=3-2 line ratios vary significantly within the nucleus with the higher line ratios occurring away from peaks of emission along an arc of active star forming regions. These high line ratios (>1) likely indicate optically thin gas created by the high temperatures caused by star forming regions in the nucleus of this starburst galaxy.Comment: 15 pages with 10 figures. To appear in the August 10 1998 issue of The Astrophysical Journa

    Spin noise spectroscopy to probe quantum states of ultracold fermionic atomic gases

    Full text link
    Ultracold alkali atoms provide experimentally accessible model systems for probing quantum states that manifest themselves at the macroscopic scale. Recent experimental realizations of superfluidity in dilute gases of ultracold fermionic (half-integer spin) atoms offer exciting opportunities to directly test theoretical models of related many-body fermion systems that are inaccessible to experimental manipulation, such as neutron stars and quark-gluon plasmas. However, the microscopic interactions between fermions are potentially quite complex, and experiments in ultracold gases to date cannot clearly distinguish between the qualitatively different microscopic models that have been proposed. Here, we theoretically demonstrate that optical measurements of electron spin noise -- the intrinsic, random fluctuations of spin -- can probe the entangled quantum states of ultracold fermionic atomic gases and unambiguously reveal the detailed nature of the interatomic interactions. We show that different models predict different sets of resonances in the noise spectrum, and once the correct effective interatomic interaction model is identified, the line-shapes of the spin noise can be used to constrain this model. Further, experimental measurements of spin noise in classical (Boltzmann) alkali vapors are used to estimate the expected signal magnitudes for spin noise measurements in ultracold atom systems and to show that these measurements are feasible

    Adaptive density estimation for stationary processes

    Get PDF
    We propose an algorithm to estimate the common density ss of a stationary process X1,...,XnX_1,...,X_n. We suppose that the process is either β\beta or τ\tau-mixing. We provide a model selection procedure based on a generalization of Mallows' CpC_p and we prove oracle inequalities for the selected estimator under a few prior assumptions on the collection of models and on the mixing coefficients. We prove that our estimator is adaptive over a class of Besov spaces, namely, we prove that it achieves the same rates of convergence as in the i.i.d framework

    Spin degree of freedom in two dimensional exciton condensates

    Get PDF
    We present a theoretical analysis of a spin-dependent multicomponent condensate in two dimensions. The case of a condensate of resonantly photoexcited excitons having two different spin orientations is studied in detail. The energy and the chemical potentials of this system depend strongly on the spin polarization . When electrons and holes are located in two different planes, the condensate can be either totally spin polarized or spin unpolarized, a property that is measurable. The phase diagram in terms of the total density and electron-hole separation is discussed.Comment: 4 pages, 3 figures, Accepted for publication in Physical Review Letter

    Fluctuations in the Irreversible Decay of Turbulent Energy

    Full text link
    A fluctuation law of the energy in freely-decaying, homogeneous and isotropic turbulence is derived within standard closure hypotheses for 3D incompressible flow. In particular, a fluctuation-dissipation relation is derived which relates the strength of a stochastic backscatter term in the energy decay equation to the mean of the energy dissipation rate. The theory is based on the so-called ``effective action'' of the energy history and illustrates a Rayleigh-Ritz method recently developed to evaluate the effective action approximately within probability density-function (PDF) closures. These effective actions generalize the Onsager-Machlup action of nonequilibrium statistical mechanics to turbulent flow. They yield detailed, concrete predictions for fluctuations, such as multi-time correlation functions of arbitrary order, which cannot be obtained by direct PDF methods. They also characterize the mean histories by a variational principle.Comment: 26 pages, Latex Version 2.09, plus seceq.sty, a stylefile for sequential numbering of equations by section. This version includes new discussion of the physical interpretation of the formal Rayleigh-Ritz approximation. The title is also change
    corecore