850 research outputs found
Precision timing of PSR J1012+5307 and strong-field GR tests
We report on the high precision timing analysis of the pulsar-white dwarf
binary PSR J1012+5307. Using 15 years of multi-telescope data from the European
Pulsar Timing Array (EPTA) network, a significant measurement of the variation
of the orbital period is obtained. Using this ideal strong-field gravity
laboratory we derive theory independent limits for both the dipole radiation
and the variation of the gravitational constant.Comment: 3 pages, Proceedings of the 12th Marcel Grossmann Meeting on General
Relativity (MG 12
The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational wave searches
The sensitivity of Pulsar Timing Arrays to gravitational waves depends on the
noise present in the individual pulsar timing data. Noise may be either
intrinsic or extrinsic to the pulsar. Intrinsic sources of noise will include
rotational instabilities, for example. Extrinsic sources of noise include
contributions from physical processes which are not sufficiently well modelled,
for example, dispersion and scattering effects, analysis errors and
instrumental instabilities. We present the results from a noise analysis for 42
millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For
characterising the low-frequency, stochastic and achromatic noise component, or
"timing noise", we employ two methods, based on Bayesian and frequentist
statistics. For 25 MSPs, we achieve statistically significant measurements of
their timing noise parameters and find that the two methods give consistent
results. For the remaining 17 MSPs, we place upper limits on the timing noise
amplitude at the 95% confidence level. We additionally place an upper limit on
the contribution to the pulsar noise budget from errors in the reference
terrestrial time standards (below 1%), and we find evidence for a noise
component which is present only in the data of one of the four used telescopes.
Finally, we estimate that the timing noise of individual pulsars reduces the
sensitivity of this data set to an isotropic, stochastic GW background by a
factor of >9.1 and by a factor of >2.3 for continuous GWs from resolvable,
inspiralling supermassive black-hole binaries with circular orbits.Comment: Accepted for publication by the Monthly Notices of the Royal
Astronomical Societ
Generic tests of the existence of the gravitational dipole radiation and the variation of the gravitational constant
We present results from the high precision timing analysis of the
pulsar-white dwarf (WD) binary PSR J1012+5307 using 15 years of multi-telescope
data. Observations were performed regularly by the European Pulsar Timing Array
(EPTA) network, consisting of Effelsberg, Jodrell Bank, Westerbork and
Nan\c{c}ay. All the timing parameters have been improved from the previously
published values, most by an order of magnitude. In addition, a parallax
measurement of mas is obtained for the first time for PSR
J1012+5307, being consistent with the optical estimation from the WD companion.
Combining improved 3D velocity information and models for the Galactic
potential the complete evolutionary Galactic path of the system is obtained. A
new intrinsic eccentricity upper limit of is acquired,
one of the smallest calculated for a binary system and a measurement of the
variation of the projected semi-major axis also constrains the system's orbital
orientation for the first time. It is shown that PSR J1012+5307 is an ideal
laboratory for testing alternative theories of gravity. The measurement of the
change of the orbital period of the system of is used to set an upper limit on the dipole gravitational wave
emission that is valid for a wide class of alternative theories of gravity.
Moreover, it is shown that in combination with other binary pulsars PSR
J1012+5307 is an ideal system to provide self-consistent, generic limits, based
only on millisecond pulsar data, for the dipole radiation and the variation of
the gravitational constant .Comment: accepted for publication in MNRAS, 11 pages, 5 figures, 2 table
Detection of Bursts from FRB 121102 with the Effelsberg 100-m Radio Telescope at 5 GHz and the Role of Scintillation
FRB 121102, the only repeating fast radio burst (FRB) known to date, was
discovered at 1.4 GHz and shortly after the discovery of its repeating nature,
detected up to 2.4 GHz. Here we present three bursts detected with the 100-m
Effelsberg radio telescope at 4.85 GHz. All three bursts exhibited frequency
structure on broad and narrow frequency scales. Using an autocorrelation
function analysis, we measured a characteristic bandwidth of the small-scale
structure of 6.41.6 MHz, which is consistent with the diffractive
scintillation bandwidth for this line of sight through the Galactic
interstellar medium (ISM) predicted by the NE2001 model. These were the only
detections in a campaign totaling 22 hours in 10 observing epochs spanning five
months. The observed burst detection rate within this observation was
inconsistent with a Poisson process with a constant average occurrence rate;
three bursts arrived in the final 0.3 hr of a 2 hr observation on 2016 August
20. We therefore observed a change in the rate of detectable bursts during this
observation, and we argue that boosting by diffractive interstellar
scintillations may have played a role in the detectability. Understanding
whether changes in the detection rate of bursts from FRB 121102 observed at
other radio frequencies and epochs are also a product of propagation effects,
such as scintillation boosting by the Galactic ISM or plasma lensing in the
host galaxy, or an intrinsic property of the burst emission will require
further observations.Comment: Accepted to ApJ. Minor typos correcte
The international pulsar timing array project: using pulsars as a gravitational wave detector
The International Pulsar Timing Array project combines observations of
pulsars from both Northern and Southern hemisphere observatories with the main
aim of detecting ultra-low frequency (~10^-9 to 10^-8 Hz) gravitational waves.
Here we introduce the project, review the methods used to search for
gravitational waves emitted from coalescing supermassive binary black-hole
systems in the centres of merging galaxies and discuss the status of the
project.Comment: accepted by Classical and Quantum Gravity. Review talk for the
Amaldi8 conference serie
A precise mass measurement of the intermediate-mass binary pulsar PSR J1802-2124
PSR J1802-2124 is a 12.6-ms pulsar in a 16.8-hour binary orbit with a
relatively massive white dwarf (WD) companion. These properties make it a
member of the intermediate-mass class of binary pulsar (IMBP) systems. We have
been timing this pulsar since its discovery in 2002. Concentrated observations
at the Green Bank Telescope, augmented with data from the Parkes and Nancay
observatories, have allowed us to determine the general relativistic Shapiro
delay. This has yielded pulsar and white dwarf mass measurements of 1.24(11)
and 0.78(4) solar masses (68% confidence), respectively. The low mass of the
pulsar, the high mass of the WD companion, the short orbital period, and the
pulsar spin period may be explained by the system having gone through a
common-envelope phase in its evolution. We argue that selection effects may
contribute to the relatively small number of known IMBPs.Comment: 9 pages, 4 figures, 3 tables, accepted for publication in the
Astrophysical Journa
PSRs J0248+6021 and J2240+5832: Young Pulsars in the Northern Galactic Plane. Discovery, Timing, and Gamma-ray observations
Pulsars PSR J0248+6021 (rotation period P=217 ms and spin-down power Edot =
2.13E35 erg/s) and PSR J2240+5832 (P=140 ms, Edot = 2.12E35 erg/s) were
discovered in 1997 with the Nancay radio telescope during a northern Galactic
plane survey, using the Navy-Berkeley Pulsar Processor (NBPP) filter bank. GeV
gamma-ray pulsations from both were discovered using the Fermi Large Area
Telescope. Twelve years of radio and polarization data allow detailed
investigations. The two pulsars resemble each other both in radio and in
gamma-ray data. Both are rare in having a single gamma-ray pulse offset far
from the radio peak. The high dispersion measure for PSR J0248+6021 (DM = 370
pc cm^-3) is most likely due to its being within the dense, giant HII region W5
in the Perseus arm at a distance of 2 kpc, not beyond the edge of the Galaxy as
obtained from models of average electron distributions. Its high transverse
velocity and the low magnetic field along the line-of-sight favor this small
distance. Neither gamma-ray, X-ray, nor optical data yield evidence for a
pulsar wind nebula surrounding PSR J0248+6021. The gamma-ray luminosity for PSR
J0248+6021 is L_ gamma = (1.4 \pm 0.3)\times 10^34 erg/s. For PSR J2240+5832,
we find either L_gamma = (7.9 \pm 5.2) \times 10^34 erg/s if the pulsar is in
the Outer arm, or L_gamma = (2.2 \pm 1.7) \times 10^34 erg/s for the Perseus
arm. These luminosities are consistent with an L_gamma ~ sqrt(Edot) rule.
Comparison of the gamma-ray pulse profiles with model predictions, including
the constraints obtained from radio polarization data, favor emission in the
far magnetosphere. These two pulsars differ mainly in their inclination angles
and acceleration gap widths, which in turn explains the observed differences in
the gamma-ray peak widths.Comment: 13 pages, Accepted to Astronomy & Astrophysic
Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system
We analytically compute the long-term orbital variations of a test particle
orbiting a central body acted upon by an incident monochromatic plane
gravitational wave. We assume that the characteristic size of the perturbed
two-body system is much smaller than the wavelength of the wave. Moreover, we
also suppose that the wave's frequency is much smaller than the particle's
orbital one. We make neither a priori assumptions about the direction of the
wavevector nor on the orbital geometry of the planet. We find that, while the
semi-major axis is left unaffected, the eccentricity, the inclination, the
longitude of the ascending node, the longitude of pericenter and the mean
anomaly undergo non-vanishing long-term changes. They are not secular trends
because of the slow modulation introduced by the tidal matrix coefficients and
by the orbital elements themselves. They could be useful to indepenedently
constrain the ultra-low frequency waves which may have been indirectly detected
in the BICEP2 experiment. Our calculation holds, in general, for any
gravitationally bound two-body system whose characteristic frequency is much
larger than the frequency of the external wave. It is also valid for a generic
perturbation of tidal type with constant coefficients over timescales of the
order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the
referees include
Discovery of Pulsed -rays from PSR J0034-0534 with the Fermi LAT: A Case for Co-located Radio and -ray Emission Regions
Millisecond pulsars (MSPs) have been firmly established as a class of
gamma-ray emitters via the detection of pulsations above 0.1 GeV from eight
MSPs by the Fermi Large Area Telescope (LAT). Using thirteen months of LAT data
significant gamma-ray pulsations at the radio period have been detected from
the MSP PSR J0034-0534, making it the ninth clear MSP detection by the LAT. The
gamma-ray light curve shows two peaks separated by 0.2740.015 in phase
which are very nearly aligned with the radio peaks, a phenomenon seen only in
the Crab pulsar until now. The 0.1 GeV spectrum of this pulsar is well
fit by an exponentially cutoff power law with a cutoff energy of 1.80.1 GeV and a photon index of 1.50.1, first errors are
statistical and second are systematic. The near-alignment of the radio and
gamma-ray peaks strongly suggests that the radio and gamma-ray emission regions
are co-located and both are the result of caustic formation.Comment: 20 pages, 3 figures, 2 tables. Accepted for publication in Ap
- …
