4,985 research outputs found

    Probing the momentum dependence of medium modifications of the nucleon-nucleon elastic cross sections

    Full text link
    The momentum dependence of the medium modifications on nucleon-nucleon elastic cross sections is discussed with microscopic transport theories and numerically investigated with an updated UrQMD microscopic transport model. The semi-peripheral Au+Au reaction at beam energy Eb=400AE_b=400A MeV is adopted as an example. It is found that the uncertainties of the momentum dependence on medium modifications of cross sections influence the yields of free nucleons and their collective flows as functions of their transverse momentum and rapidity. Among these observables, the elliptic flow is sensitively dependent on detailed forms of the momentum dependence and more attention should be paid. The elliptic flow is hardly influenced by the probable splitting effect of the neutron-neutron and proton-proton cross sections so that one might pin down the mass splitting effect of the mean-field level at high beam energies and high nuclear densities by exploring the elliptic flow of nucleons or light clusters.Comment: 13 pages, 6 figures, 1 tabl

    Anisotropies in momentum space at finite Shear Viscosity in ultrarelativistic heavy-ion collisions

    Full text link
    Within a parton cascade we investigate the dependence of anisotropies in momentum space, namely the elliptic flow v2=v_2= and the v4=v_4=, on both the finite shear viscosity η\eta and the freeze-out (f.o.) dynamics at the RHIC energy of 200 AGeV. In particular it is discussed the impact of the f.o. dynamics looking at two different procedures: switching-off the collisions when the energy density goes below a fixed value or reducing the cross section according to the increase in η/s\eta/s from a QGP phase to a hadronic one. We address the relation between the scaling of v2(pT)v_2(p_T) with the eccentricity ϵx\epsilon_x and with the integrated elliptic flow. We show that the breaking of the v2(pT)/ϵxv_2(p_T)/\epsilon_x scaling is not coming mainly from the finite η/s\eta/s but from the f.o. dynamics and that the v2(pT)v_2(p_T) is weakly dependent on the f.o. scheme. On the other hand the v4(pT)v_4(p_T) is found to be much more dependent on both the η/s\eta/s and the f.o. dynamics and hence is indicated to put better constraints on the properties of the QGP. A first semi-quantitative analysis show that both v2v_2 and v4v_4 (with the smooth f.o.) consistently indicate a plasma with 4πη/s124\pi \eta/s \sim 1-2.Comment: 7 pages. Proceedings of the International School of Nuclear Physics in Erice, Sicily, to appear in Progress in Particle and Nuclear Physic

    Uncertainty in the Parameters and Predictions of Phytoplankton Models

    Get PDF
    A methodology is developed to evaluate in quantitative terms the effect of uncertainty in the data and the model on the reliability of parameter estimates in phytoplankton models, and to assess the effect of the resulting parameter uncertainty on model predictions. The method of maximum likelihood is adopted as the basis of the analysis, resulting in a weighted least squares estimation problem. The analysis provides an estimate for both the weights and the model errors, where the weights appear to be determined by the data errors and the model errors simultaneously. A preliminary application of the method is presented for a 16 state variable, 20 parameter phytoplankton model for Lake Ontario. Extensive data for 14 of the 36 state variables is used to calculate the parameter uncertainty covariance matrix and model error variances. The degree of uncertainty of parameters and their mutual cross-correlations are assessed in terms of the subjective options held by workers in the field. Also a preliminary estimate of the effects of the quantity of data available is presented. Finally, the consequences of parameter uncertainty on the prediction error are indicated. It follows that the presence of cross-correlation in the parameter set resulting from the calibration considerably mitigates the error of prediction

    Influence of vector interactions on the hadron-quark/gluon phase transition

    Full text link
    The hadron-quark/gluon phase transition is studied in the two-phase model. As a further study of our previous work, both the isoscalar and isovector vector interactions are included in the Polyakov loop modified Nambu--Jona-Lasinio model (PNJL) for the quark phase. The relevance of the exchange (Fock) terms is stressed and suitably accounted for. The calculation shows that the isovector vector interaction delays the phase transition to higher densities and the range of the mixed phase correspondingly shrinks. Meanwhile the asymmetry parameter of quark matter in the mixed phase decreases with the strengthening of this interaction channel. This leads to some possible observation signals being weakened, although still present. We show that these can be rather general effects of a repulsion in the quark phase due to the symmetry energy. This is also confirmed by a simpler calculation with the MIT--Bag model. However, the asymmetry parameter of quark matter is slightly enhanced with the inclusion of the isoscalar vector interaction, but the phase transition will be moved to higher densities. The largest uncertainty on the phase transition lies in the undetermined coupling constants of the vector interactions. In this respect new data on the mixed phase obtained from Heavy Ion Collisions at Intermediate Energies appear very important.Comment: submitted to Phys. Rev.

    Fast nucleon emission as a probe of the isospin momentum dependence

    Full text link
    In this article we investigate the structure of the non-local part of the symmetry term, that leads to a splitting of the effective masses of protons and neutrons in asymmetric matter. Based on microscopic transport simulations we suggest some rather sensitive observables in collisions of neutron-rich (unstable) ions at intermediate (RIARIA) energies. In particular we focus the attention on pre-equilibrium nucleon emissions. We discuss interesting correlations between the N/Z content of the fast emitted particles and their rapidity or transverse momentum, that show a nice dependence on the prescription used for the effective mass splitting.Comment: 5 pages, 6 figures, revtex

    Hadron-quark phase transition in asymmetric matter with dynamical quark masses

    Full text link
    The two-Equation of State (EoS) model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL) effective theory is used to investigate the influence of dynamical quark mass effects on the phase transition. At variance to the MIT-Bag results, with fixed current quark masses, the main important effect of the chiral dynamics is the appearance of an End-Point for the coexistence zone. We show that a first order hadron-quark phase transition may take place in the region T=(50-80)MeV and \rho_B=(2-4)\rho_0, which is possible to be probed in the new planned facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From isospin properties of the mixed phase somepossible signals are suggested. The importance of chiral symmetry and dynamical quark mass on the hadron-quark phase transition is stressed. The difficulty of an exact location of Critical-End-Point comes from its appearance in a region of competition between chiral symmetry breaking and confinement, where our knowledge of effective QCD theories is still rather uncertain.Comment: 13 pages, 16 figures (revtex
    corecore