21,788 research outputs found
Dwarf Spheroidal Galaxies : Keystones of Galaxy Evolution
Dwarf spheroidal galaxies are the most insignificant extragalactic stellar
systems in terms of their visibility, but potentially very significant in terms
of their role in the formation and evolution of much more luminous galaxies. We
discuss the present observational data and their implications for theories of
the formation and evolution of both dwarf and giant galaxies. The putative dark
matter content of these low-surface-brightness systems is of particular
interest, as is their chemical evolution. Surveys for new dwarf spheroidals
hidden behind the stars of our Galaxy and those which are not bound to giant
galaxies may give new clues as to the origins of this unique class of galaxy.Comment: 41 pages, plain tex (no figures included -- available by snail mail).
review to appear in PAS
Probing Broad Absorption Line Quasar Outflows: X-ray Insights
Energetic outflows appear to occur in conjunction with active mass accretion
onto supermassive black holes. These outflows are most readily observed in the
approximately 10% of quasars with broad absorption lines, where the observer's
line of sight passes through the wind. Until fairly recently, the paucity of
X-ray data from these objects was notable, but now sensitive hard-band missions
such as Chandra and XMM-Newton are routinely detecting broad absorption line
quasars. The X-ray regime offers qualitatively new information for the
understanding of these objects, and these new results must be taken into
account in theoretical modeling of quasar winds.Comment: Submitted to Advances in Space Research for New X-ray Results from
Clusters of Galaxies and Black Holes (Oct 2002; Houston, TX), eds. C. Done,
E.M. Puchnarewicz, M.J. Ward. Requires cospar.sty (6 pgs, 5 figs
A three-dimensional hydrodynamical line profile analysis of iron lines and barium isotopes in HD140283
Heavy-elements, i.e. those beyond the iron peak, mostly form via two neutron
capture processes: the s- and r-process. Metal-poor stars should contain fewer
isotopes that form via the s-process, according to currently accepted theory.
It has been shown in several investigations that theory and observation do not
agree well, raising questions on the validity of either the methodology or the
theory. We analyse the metal-poor star HD140283, for which we have a high
quality spectrum. We test whether a 3D LTE stellar atmosphere and spectrum
synthesis code permits a more reliable analysis of the iron abundance and
barium isotope ratio than a 1D LTE analysis. Using 3D model atmospheres, we
examine 91 iron lines of varying strength and formation depth. This provides us
with the star's rotational speed. With this, we model the barium isotope ratio
by exploiting the hyperfine structure of the singly ionised 4554 resonance
line, and study the impact of the uncertainties in the stellar parameters.
HD140283's vsini = 1.65 +/- 0.05 km/s. Barium isotopes under the 3D paradigm
show a dominant r-process signature as 77 +/- 6 +/- 17% of barium isotopes form
via the r-process, where errors represent the assigned random and systematic
errors, respectively. We find that 3D LTE fits reproduce iron line profiles
better than those in 1D, but do not provide a unique abundance (within the
uncertainties). However, we demonstrate that the isotopic ratio is robust
against this shortcoming. Our barium isotope result agrees well with currently
accepted theory regarding the formation of the heavy-elements during the early
Galaxy. The improved fit to the asymmetric iron line profiles suggests that the
current state of 3D LTE modelling provides excellent simulations of fluid
flows. However, the abundances they provide are not yet self-consistent. This
may improve with NLTE considerations and higher resolution models.Comment: 16 pages, 10 figures, 5 tables. Accepted for publication in A&
Accurate near-field calculation in the rigorous coupled-wave analysis method
The rigorous coupled-wave analysis (RCWA) is one of the most successful and
widely used methods for modeling periodic optical structures. It yields fast
convergence of the electromagnetic far-field and has been adapted to model
various optical devices and wave configurations. In this article, we
investigate the accuracy with which the electromagnetic near-field can be
calculated by using RCWA and explain the observed slow convergence and
numerical artifacts from which it suffers, namely unphysical oscillations at
material boundaries due to the Gibb's phenomenon. In order to alleviate these
shortcomings, we also introduce a mathematical formulation for accurate
near-field calculation in RCWA, for one- and two-dimensional straight and
slanted diffraction gratings. This accurate near-field computational approach
is tested and evaluated for several representative test-structures and
configurations in order to illustrate the advantages provided by the proposed
modified formulation of the RCWA.Comment: 13 pages, 12 figure
Solar Flare X-ray Source Motion as a Response to Electron Spectral Hardening
Context: Solar flare hard X-rays (HXRs) are thought to be produced by
nonthermal coronal electrons stopping in the chromosphere, or remaining trapped
in the corona. The collisional thick target model (CTTM) predicts that sources
produced by harder power-law injection spectra should appear further down the
legs or footpoints of a flare loop. Therefore, hardening of the injected
power-law electron spectrum during flare onset should be concurrent with a
descending hard X-ray source.
Aims: To test this implication of the CTTM by comparing its predicted HXR
source locations with those derived from observations of a solar flare which
exhibits a nonthermally-dominated spectrum before the peak in HXRs, known as an
early impulsive event.
Methods: HXR images and spectra of an early impulsive C-class flare were
obtained using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI).
Images were reconstructed to produce HXR source height evolutions for three
energy bands. Spatially-integrated spectral analysis was performed to isolate
nonthermal emission, and to determine the power-law index of the electron
injection spectrum. The observed height-time evolutions were then fit with
CTTM-based simulated heights for each energy.
Results: A good match between model and observed source heights was reached,
requiring a density model that agreed well with previous studies of flare loop
densities.
Conclusions: The CTTM has been used to produce a descent of model HXR source
heights that compares well with observations of this event. Based on this
interpretation, downward motion of nonthermal sources should indeed occur in
any flare where there is spectral hardening in the electron distribution during
a flare. However, this would often be masked by thermal emission associated
with flare plasma pre-heating.Comment: 8 pages, 5 figure
- …
