7 research outputs found
Projection Postulate and Atomic Quantum Zeno Effect
The projection postulate has been used to predict a slow-down of the time
evolution of the state of a system under rapidly repeated measurements, and
ultimately a freezing of the state. To test this so-called quantum Zeno effect
an experiment was performed by Itano et al. (Phys. Rev. A 41, 2295 (1990)) in
which an atomic-level measurement was realized by means of a short laser pulse.
The relevance of the results has given rise to controversies in the literature.
In particular the projection postulate and its applicability in this experiment
have been cast into doubt. In this paper we show analytically that for a wide
range of parameters such a short laser pulse acts as an effective level
measurement to which the usual projection postulate applies with high accuracy.
The corrections to the ideal reductions and their accumulation over n pulses
are calculated. Our conclusion is that the projection postulate is an excellent
pragmatic tool for a quick and simple understanding of the slow-down of time
evolution in experiments of this type. However, corrections have to be
included, and an actual freezing does not seem possible because of the finite
duration of measurements.Comment: 25 pages, LaTeX, no figures; to appear in Phys. Rev.
Emergence from irreversibility
The emergent nature of quantum mechanics is shown to follow from a precise correspondence with the classical theory of irreversible thermodynamics. Specifically, the linear (or Gaussian) regime of the latter can be put in a 1-to-1 map with the semiclassical approximation to quantum mechanics. The very possibility of reinterpreting quantum mechanics as a thermodynamics proves that the former is an emergent phenomenon. That is, quantum mechanics is a coarse-grained description of some underlying degrees of freedom. © Published under licence by IOP Publishing Ltd.Fernández De Córdoba Castellá, PJ.; Isidro San Juan, JM.; Perea Córdoba, MH. (2013). Emergence from irreversibility. Journal of Physics: Conference Series. 442(012033). doi:10.1088/1742-6596/442/1/012033S442012033ACOSTA, D., FERNÁNDEZ DE CÓRDOBA, P., ISIDRO, J. M., & SANTANDER, J. L. G. (2012). AN ENTROPIC PICTURE OF EMERGENT QUANTUM MECHANICS. International Journal of Geometric Methods in Modern Physics, 09(05), 1250048. doi:10.1142/s021988781250048xAcosta, D., Cordóba, P. F. de, Isidro, J. M., & Santander, J. L. G. (2012). A holographic map of action onto entropy. Journal of Physics: Conference Series, 361, 012027. doi:10.1088/1742-6596/361/1/012027Blasone, M., Jizba, P., & Vitiello, G. (2001). Dissipation and quantization. Physics Letters A, 287(3-4), 205-210. doi:10.1016/s0375-9601(01)00474-1Blasone, M., Jizba, P., & Vitiello, G. (2003). Dissipation, Emergent Quantization, and Quantum Fluctuations. Lecture Notes in Physics, 151-163. doi:10.1007/978-3-540-40968-7_12Blasone, M., Jizba, P., & Kleinert, H. (2005). Quantum behavior of deterministic systems with information loss: Path integral approach. Annals of Physics, 320(2), 468-486. doi:10.1016/j.aop.2005.09.001Blasone, M., Jizba, P., & Scardigli, F. (2009). Can quantum mechanics be an emergent phenomenon? Journal of Physics: Conference Series, 174, 012034. doi:10.1088/1742-6596/174/1/012034Blasone, M., Jizba, P., Scardigli, F., & Vitiello, G. (2009). Dissipation and quantization for composite systems. Physics Letters A, 373(45), 4106-4112. doi:10.1016/j.physleta.2009.09.016Carroll, R. (2010). On the Emergence Theme of Physics. doi:10.1142/7568ELZE, H.-T. (2009). THE ATTRACTOR AND THE QUANTUM STATES. International Journal of Quantum Information, 07(supp01), 83-96. doi:10.1142/s0219749909004700Elze, H.-T. (2009). Does quantum mechanics tell an atomistic spacetime? Journal of Physics: Conference Series, 174, 012009. doi:10.1088/1742-6596/174/1/012009Elze, H.-T. (2012). Linear dynamics of quantum-classical hybrids. Physical Review A, 85(5). doi:10.1103/physreva.85.052109Elze, H.-T. (2012). Four questions for quantum-classical hybrid theory. Journal of Physics: Conference Series, 361, 012004. doi:10.1088/1742-6596/361/1/012004Faraggi, A. E., & Matone, M. (1998). Equivalence principle, Planck length and quantum Hamilton–Jacobi equation. Physics Letters B, 445(1-2), 77-81. doi:10.1016/s0370-2693(98)01484-1Grössing, G., Fussy, S., Pascasio, J. M., & Schwabl, H. (2012). The Quantum as an Emergent System. Journal of Physics: Conference Series, 361, 012008. doi:10.1088/1742-6596/361/1/012008Hooft, G. ’t. (1999). Quantum gravity as a dissipative deterministic system. Classical and Quantum Gravity, 16(10), 3263-3279. doi:10.1088/0264-9381/16/10/316Hooft, G. ’t. (2012). Quantum Mechanics from Classical Logic. Journal of Physics: Conference Series, 361, 012024. doi:10.1088/1742-6596/361/1/012024HU, B. L. (2011). GRAVITY AND NONEQUILIBRIUM THERMODYNAMICS OF CLASSICAL MATTER. International Journal of Modern Physics D, 20(05), 697-716. doi:10.1142/s0218271811019049Hu, B. L. (2009). Emergent/quantum gravity: macro/micro structures of spacetime. Journal of Physics: Conference Series, 174, 012015. doi:10.1088/1742-6596/174/1/012015Kiefer, C. (2010). Can Quantum Theory be Applied to the Universe as a Whole? Foundations of Physics, 40(9-10), 1410-1418. doi:10.1007/s10701-010-9441-3Onsager, L., & Machlup, S. (1953). Fluctuations and Irreversible Processes. Physical Review, 91(6), 1505-1512. doi:10.1103/physrev.91.1505Penrose, R. (2009). Black holes, quantum theory and cosmology. Journal of Physics: Conference Series, 174, 012001. doi:10.1088/1742-6596/174/1/012001Sakellariadou, M., Stabile, A., & Vitiello, G. (2012). Noncommutative spectral geometry, dissipation and the origin of quantization. Journal of Physics: Conference Series, 361, 012025. doi:10.1088/1742-6596/361/1/012025Wetterich, C. (2009). Emergence of quantum mechanics from classical statistics. Journal of Physics: Conference Series, 174, 012008. doi:10.1088/1742-6596/174/1/01200
A holographic map of action onto entropy
We propose a holographic correspondence between the action integral I
describing the mechanics of a finite number of degrees of freedom in the bulk,
and the entropy S of the boundary (a holographic screen) enclosing that same
volume. The action integral must be measured in units of (i times) Planck's
constant, while the entropy must be measured in units of Boltzmann's constant.
In this way we are led to an intriguing relation between the second law of
thermodynamics and the uncertainty principle of quantum mechanics.Comment: 12 pages. arXiv admin note: substantial text overlap with
arXiv:1107.189
An entropic picture of emergent quantum mechanics
Quantum mechanics emerges à la Verlinde from a foliation of 3 by holographic screens, when regarding the latter as entropy reservoirs that a particle can exchange entropy with. This entropy is quantized in units of Boltzmann's constant k B. The holographic screens can be treated thermodynamically as stretched membranes. On that side of a holographic screen where spacetime has already emerged, the energy representation of thermodynamics gives rise to the usual quantum mechanics. A knowledge of the different surface densities of entropy flow across all screens is equivalent to a knowledge of the quantum-mechanical wavefunction on 3. The entropy representation of thermodynamics, as applied to a screen, can be used to describe quantum mechanics in the absence of spacetime, that is, quantum mechanics beyond a holographic screen, where spacetime has not yet emerged. Our approach can be regarded as a formal derivation of Planck's constant ¿ from Boltzmann's constant k B. © 2012 World Scientific Publishing Company.J.M.I. thanks Max-Planck-Institut fur Gravitationsphysik, Albert-Einstein-Institut (Golm, Germany), for hospitality extended a number of times over the years. This work has been supported by Universidad Politecnica de Valencia under grant PAID-06-09.Acosta Iglesias, D.; Fernández De Córdoba Castellá, PJ.; Isidro San Juan, JM.; González-Santander Martínez, JL. (2012). An entropic picture of emergent quantum mechanics. International Journal of Geometric Methods in Modern Physics. 9(5). https://doi.org/10.1142/S021988781250048XS95Adler, S. L. (2004). Quantum Theory as an Emergent Phenomenon. doi:10.1017/cbo9780511535277Banerjee, R., & Majhi, B. R. (2010). Statistical origin of gravity. Physical Review D, 81(12). doi:10.1103/physrevd.81.124006BANERJEE, R. (2010). FROM BLACK HOLES TO EMERGENT GRAVITY. International Journal of Modern Physics D, 19(14), 2365-2369. doi:10.1142/s0218271810018475Bardeen, J. M., Carter, B., & Hawking, S. W. (1973). The four laws of black hole mechanics. Communications in Mathematical Physics, 31(2), 161-170. doi:10.1007/bf01645742Bekenstein, J. D. (1973). Black Holes and Entropy. Physical Review D, 7(8), 2333-2346. doi:10.1103/physrevd.7.2333Blau, M., & Theisen, S. (2009). String theory as a theory of quantum gravity: a status report. General Relativity and Gravitation, 41(4), 743-755. doi:10.1007/s10714-008-0752-zCarroll, R. W. (2006). Fluctuations, Information, Gravity and the Quantum Potential. doi:10.1007/1-4020-4025-3Carroll, R. (2010). On The Emergence Theme Of Physics. doi:10.1142/9789814291804Elze, H.-T. (2003). Introduction: Quantum Theory and Beneath? Lecture Notes in Physics, 119-124. doi:10.1007/978-3-540-40968-7_9De Gosson, M. A. (2009). The Symplectic Camel and the Uncertainty Principle: The Tip of an Iceberg? Foundations of Physics, 39(2), 194-214. doi:10.1007/s10701-009-9272-2De Gosson, M., & Luef, F. (2009). Symplectic capacities and the geometry of uncertainty: The irruption of symplectic topology in classical and quantum mechanics. Physics Reports, 484(5), 131-179. doi:10.1016/j.physrep.2009.08.001Grössing, G. (2008). The vacuum fluctuation theorem: Exact Schrödinger equation via nonequilibrium thermodynamics. Physics Letters A, 372(25), 4556-4563. doi:10.1016/j.physleta.2008.05.007Grössing, G. (2009). On the thermodynamic origin of the quantum potential. Physica A: Statistical Mechanics and its Applications, 388(6), 811-823. doi:10.1016/j.physa.2008.11.033Hawking, S. W. (1975). Particle creation by black holes. Communications In Mathematical Physics, 43(3), 199-220. doi:10.1007/bf02345020’t Hooft, G. (1985). On the quantum structure of a black hole. Nuclear Physics B, 256, 727-745. doi:10.1016/0550-3213(85)90418-3Hooft, G. ’t. (2007). A mathematical theory for deterministic quantum mechanics. Journal of Physics: Conference Series, 67, 012015. doi:10.1088/1742-6596/67/1/012015ISIDRO, J. M. (2008). QUANTUM MECHANICS AS A SPONTANEOUSLY BROKEN GAUGE THEORY ON A U(1) GERBE. International Journal of Geometric Methods in Modern Physics, 05(02), 233-252. doi:10.1142/s0219887808002722ISIDRO, J. M., DE CÓRDOBA, P. F., RIVERA–REBOLLEDO, J. M., & SANTANDER, J. L. G. (2011). ON THE NONCOMMUTATIVE EIKONAL. International Journal of Geometric Methods in Modern Physics, 08(03), 621-638. doi:10.1142/s0219887811005294Jacobson, T. (1995). Thermodynamics of Spacetime: The Einstein Equation of State. Physical Review Letters, 75(7), 1260-1263. doi:10.1103/physrevlett.75.1260Khrennikov, A. (2010). An analogue of the Heisenberg uncertainty relation in prequantum classical field theory. Physica Scripta, 81(6), 065001. doi:10.1088/0031-8949/81/06/065001Matone, M. (2002). Foundations of Physics Letters, 15(4), 311-328. doi:10.1023/a:1021243926749PADMANABHAN, T. (2002). THERMODYNAMICS OF HORIZONS: A COMPARISON OF SCHWARZSCHILD, RINDLER AND de SITTER SPACETIMES. Modern Physics Letters A, 17(15n17), 923-942. doi:10.1142/s021773230200751xPADMANABHAN, T. (2002). IS GRAVITY AN INTRINSICALLY QUANTUM PHENOMENON? DYNAMICS OF GRAVITY FROM THE ENTROPY OF SPACE–TIME AND THE PRINCIPLE OF EQUIVALENCE. Modern Physics Letters A, 17(18), 1147-1158. doi:10.1142/s0217732302007260SINGH, T. P. (2006). STRING THEORY, QUANTUM MECHANICS AND NONCOMMUTATIVE GEOMETRY: A NEW PERSPECTIVE ON THE GRAVITATIONAL DYNAMICS OF D0-BRANES. International Journal of Modern Physics D, 15(12), 2153-2158. doi:10.1142/s021827180600973xSingh, T. P. (2008). Noncommutative gravity, a ‘no strings attached’ quantum-classical duality, and the cosmological constant puzzle. General Relativity and Gravitation, 40(10), 2037-2042. doi:10.1007/s10714-008-0670-0Thirring, W. (2002). Quantum Mathematical Physics. doi:10.1007/978-3-662-05008-8Unruh, W. G. (1976). Notes on black-hole evaporation. Physical Review D, 14(4), 870-892. doi:10.1103/physrevd.14.870Volovik, G. E. (2010). ħ as parameter of Minkowski metric in effective theory. JETP Letters, 90(11), 697-704. doi:10.1134/s002136400923002
