597 research outputs found
IceCube expectations for two high-energy neutrino production models at active galactic nuclei
We have determined the currently allowed regions of the parameter spaces of
two representative models of diffuse neutrino flux from active galactic nuclei
(AGN): one by Koers & Tinyakov (KT) and another by Becker & Biermann (BB). Our
observable has been the number of upgoing muon-neutrinos expected in the
86-string IceCube detector, after 5 years of exposure, in the range 10^5 <
E/GeV < 10^8. We have used the latest estimated discovery potential of the
IceCube-86 array at the 5-sigma level to determine the lower boundary of the
regions, while for the upper boundary we have used either the AMANDA upper
bound on the neutrino flux or the more recent preliminary upper bound given by
the half-completed IceCube-40 array (IC40). We have varied the spectral index
of the proposed power-law fluxes, alpha, and two parameters of the BB model:
the ratio between the boost factors of neutrinos and cosmic rays,
Gamma_nu/Gamma_{CR}, and the maximum redshift of the sources that contribute to
the cosmic-ray flux, zCRmax. For the KT model, we have considered two
scenarios: one in which the number density of AGN does not evolve with redshift
and another in which it evolves strongly, following the star formation rate.
Using the IC40 upper bound, we have found that the models are visible in
IceCube-86 only inside very thin strips of parameter space and that both of
them are discarded at the preferred value of alpha = 2.7 obtained from fits to
cosmic-ray data. Lower values of alpha, notably the values 2.0 and 2.3 proposed
in the literature, fare better. In addition, we have analysed the capacity of
IceCube-86 to discriminate between the models within the small regions of
parameter space where both of them give testable predictions. Within these
regions, discrimination at the 5-sigma level or more is guaranteed.Comment: 24 pages, 6 figures, v2: new IceCube-40 astrophysical neutrino upper
bound and IceCube-86 discovery potential used, explanation of AGN flux models
improved, only upgoing neutrinos used, conclusions strengthened. Accepted for
publication in JCA
Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of December 27th, 2004 with the AMANDA-II detector
On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater
1806-20 saturated many satellite gamma-ray detectors. This event was by more
than two orders of magnitude the brightest cosmic transient ever observed. If
the gamma emission extends up to TeV energies with a hard power law energy
spectrum, photo-produced muons could be observed in surface and underground
arrays. Moreover, high-energy neutrinos could have been produced during the SGR
giant flare if there were substantial baryonic outflow from the magnetar. These
high-energy neutrinos would have also produced muons in an underground array.
AMANDA-II was used to search for downgoing muons indicative of high-energy
gammas and/or neutrinos. The data revealed no significant signal. The upper
limit on the gamma flux at 90% CL is dN/dE < 0.05 (0.5) TeV^-1 m^-2 s^-1 for
gamma=-1.47 (-2). Similarly, we set limits on the normalization constant of the
high-energy neutrino emission of 0.4 (6.1) TeV^-1 m^-2 s^-1 for gamma=-1.47
(-2).Comment: 14 pages, 3 figure
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at
the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna
The random superposition of many weak sources will produce a stochastic
background of gravitational waves that may dominate the response of the LISA
(Laser Interferometer Space Antenna) gravitational wave observatory. Unless
something can be done to distinguish between a stochastic background and
detector noise, the two will combine to form an effective noise floor for the
detector. Two methods have been proposed to solve this problem. The first is to
cross-correlate the output of two independent interferometers. The second is an
ingenious scheme for monitoring the instrument noise by operating LISA as a
Sagnac interferometer. Here we derive the optimal orbital alignment for
cross-correlating a pair of LISA detectors, and provide the first analytic
derivation of the Sagnac sensitivity curve.Comment: 9 pages, 11 figures. Significant changes to the noise estimate
Detection of Atmospheric Muon Neutrinos with the IceCube 9-String Detector
The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino
detector under construction at the geographic South Pole. The dominant
population of neutrinos detected in IceCube is due to meson decay in cosmic-ray
air showers. These atmospheric neutrinos are relatively well-understood and
serve as a calibration and verification tool for the new detector. In 2006, the
detector was approximately 10% completed, and we report on data acquired from
the detector in this configuration. We observe an atmospheric neutrino signal
consistent with expectations, demonstrating that the IceCube detector is
capable of identifying neutrino events. In the first 137.4 days of livetime,
234 neutrino candidates were selected with an expectation of 211 +/-
76.1(syst.) +/- 14.5(stat.) events from atmospheric neutrinos
Do dividends signal future earnings in the Nordic stock markets?
We study the informational content of dividends on three Nordic civil law markets, where other simultaneous but blurring motives for dividends may be weaker. Using aggregate data on real earnings per share and payout ratios, long time series from 1969 to 2010, and methodologies which address problems of endogeneity, non-stationarity and autocorrelation (including a Vector Error Correction Model approach), we find evidence on dividend signaling in Nordic markets. However, we also find heterogeneity in the relationship between dividends and earnings on markets similar in many respects, suggesting that even small variations in the institutional surroundings may be important for the results
- …
