3,630 research outputs found
Homogeneous Gold Catalysis through Relativistic Effects: Addition of Water to Propyne
In the catalytic addition of water to propyne the Au(III) catalyst is not
stable under non-relativistic conditions and dissociates into a Au(I) compound
and Cl2. This implies that one link in the chain of events in the catalytic
cycle is broken and relativity may well be seen as the reason why Au(III)
compounds are effective catalysts.Comment: 12 pages, 3 figures, 1 tabl
Maturation trajectories of cortical resting-state networks depend on the mediating frequency band
The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13–30 Hz) and gamma (31–80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development.This work was supported by grants from the Nancy Lurie Marks Family Foundation (TK, SK, MGK), Autism Speaks (TK), The Simons Foundation (SFARI 239395, TK), The National Institute of Child Health and Development (R01HD073254, TK), National Institute for Biomedical Imaging and Bioengineering (P41EB015896, 5R01EB009048, MSH), and the Cognitive Rhythms Collaborative: A Discovery Network (NFS 1042134, MSH). (Nancy Lurie Marks Family Foundation; Autism Speaks; SFARI 239395 - Simons Foundation; R01HD073254 - National Institute of Child Health and Development; P41EB015896 - National Institute for Biomedical Imaging and Bioengineering; 5R01EB009048 - National Institute for Biomedical Imaging and Bioengineering; NFS 1042134 - Cognitive Rhythms Collaborative: A Discovery Network
A QM/MM approach for the study of monolayer-protected gold clusters
We report the development and implementation of hybrid methods that combine
quantum mechanics (QM) with molecular mechanics (MM) to theoretically
characterize thiolated gold clusters. We use, as training systems, structures
such as Au25(SCH2-R)18 and Au38(SCH2-R)24, which can be readily compared with
recent crystallographic data. We envision that such an approach will lead to an
accurate description of key structural and electronic signatures at a fraction
of the cost of a full quantum chemical treatment. As an example, we demonstrate
that calculations of the 1H and 13C NMR shielding constants with our proposed
QM/MM model maintain the qualitative features of a full DFT calculation, with
an order-of-magnitude increase in computational efficiency.Comment: Journal of Materials Science, 201
Seismic microzonation for Muscat region, Sultanate of Oman
Site characterization was carried out for Muscat region using the ambient noise measurements applying the horizontal-to-vertical spectral ratio (HVSR) technique and using active seismic survey utilizing the multichannel analysis of surface waves (MASW) of survey data. Microtremors measurements were carried out at 459 sites using short-period sensors. This extensive survey allowed the fundamental resonance frequency of the soft soil to be mapped and areas prone to site amplification to be identified. The results indicate a progressive decrease in the fundamental resonance frequencies from the southern and eastern parts, where the bedrock outcrops, toward the northern coast where a thickness of sedimentary cover is present. Shear wave velocity (Vs) was evaluated using the 2-D MASW at carefully selected 99 representative sites in Muscat. These 99 sites were investigated with survey lines of 52 m length. 1-D and interpolated 2-D profiles were generated up to a depth range 20–40 m. The vertical Vs soundings were used in the SHAKE91 software in combination with suitable seismic input strong motion records to obtain the soil effect. Most of the study area has amplification values less than 2.0 for all the considered spectral periods. The estimated fundamental frequencies obtained using the H/V spectral ratio method and using SHAKE91 are found to be in a relatively good agreement. Maps of spectral amplification, earthquake characteristics on the ground surface for peak ground and spectral accelerations at 0.1, 0.2, 0.3, 1.0, and 2.0 s, for 475 years return period are produced. The surface ground motion maps show that the hazard level is moderate with expected PGA in the range 0.059–0.145 g for 475 years return period.Oman Ministerial Cabinet (project # 22409017
Polypyrrole-Fe2O3 nanohybrid materials for electrochemical storage
We report on the synthesis and electrochemical characterization of nanohybrid polypyrrole (PPy) (PPy/Fe2O3) materials for electrochemical storage applications. We have shown that the incorporation of nanoparticles inside the PPy notably increases the charge storage capability in comparison to the “pure” conducting polymer. Incorporation of large anions, i.e., paratoluenesulfonate, allows a further improvement in the capacity. These charge storage modifications have been attributed to the morphology of the composite in which the particle sizes and the specific surface area are modified with the incorporation of nanoparticles. High capacity and stability have been obtained in PC/NEt4BF4 (at 20 mV/s), i.e., 47 mAh/g, with only a 3% charge loss after one thousand cyles. The kinetics of charge–discharge is also improved by the hybrid nanocomposite morphology modifications, which increase the rate of insertion–expulsion of counter anions in the bulk of the film. A room temperature ionic liquid such as imidazolium trifluoromethanesulfonimide seems to be a promising electrolyte because it further increases the capacity up to 53 mAh/g with a high stability during charge–discharge processes
Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum
Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism
Pneumonia detection in chest X-ray images using compound scaled deep learning model
Pneumonia is the leading cause of death worldwide for children under 5 years of age. For pneumonia diagnosis, chest X-rays are examined by trained radiologists. However, this process is tedious and time-consuming. Biomedical image diagnosis techniques show great potential in medical image examination. A model for the identification of pneumonia, trained on chest X-ray images, has been proposed in this paper. The compound scaled ResNet50, which is the upscaled version of ResNet50, has been used in this paper. ResNet50 is a multilayer layer convolution neural network having residual blocks. As it was very difficult to obtain a sufficiently large dataset for detection tasks, data augmentation techniques were used to increase the training dataset. Transfer learning is also used while training the models. The proposed model could help in detecting the disease and can assist the radiologists in their clinical decision-making process. The model was evaluated and statistically validated to overfitting and generalization errors. Different scores, such as testing accuracy, F1, recall, precision and AUC score, were computed to check the efficacy of the proposed model. The proposed model attained a test accuracy of 98.14% and an AUC score of 99.71 on the test data from the Guangzhou Women and Children’s Medical Center pneumonia dataset
An Optimized FPGA Implementation of CAN 2.0 Protocol Error Detection Circuitry
Controller Area Network is an ideal serial bus design suitable for modern embedded system based networks. It finds its use in most of critical applications, where error detection and subsequent treatment on error is a critical issue. CRC (Cyclic Redundancy Check) block was developed on FPGA in order to meet the needs for simple, low power and low cost wireless communication. This paper gives a short overview of CRC block in the Digital transmitter based on the CAN 2.0 protocols. CRC is the most preferred method of encoding because it provides very efficient protection against commonly occurring burst errors, and is easily implemented. This technique is also sometimes applied to data storage devices, such as a disk drive. In this paper a technique to model the error detection circuitry of CAN 2.0 protocols on reconfigurable platform have been discussed? The software simulation results are presented in the form of timing diagram.FPGA implementation results shows that the circuitry requires very small amount of digital hardware. The Purpose of the research is to diversify the design methods by using VHDL code entry through Modelsim 5.5e simulator and Xilinx ISE8.3i.The VHDL code is used to characterize the CRC block behavior which is then simulated, synthesized and successfully implemented on Sparten3 FPGA .Here, Simulation and Synthesized results are also presented to verify the functionality of the CRC -16 Block. The data rate of CRC block is 250 kbps .Estimated power consumption and maximum operating frequency of the circuitry is also provided
Development of processes allowing near real-time refinement and validation of triage tools during the early stage of an outbreak in readiness for surge: the FLU-CATs Study
BACKGROUND: During pandemics of novel influenza and outbreaks of emerging infections, surge in health-care demand can exceed capacity to provide normal standards of care. In such exceptional circumstances, triage tools may aid decisions in identifying people who are most likely to benefit from higher levels of care. Rapid research during the early phase of an outbreak should allow refinement and validation of triage tools so that in the event of surge a valid tool is available. The overarching study aim is to conduct a prospective near real-time analysis of structured clinical assessments of influenza-like illness (ILI) using primary care electronic health records (EHRs) during a pandemic. This abstract summarises the preparatory work, infrastructure development, user testing and proof-of-concept study.
OBJECTIVES: (1) In preparation for conducting rapid research in the early phase of a future outbreak, to develop processes that allow near real-time analysis of general practitioner (GP) assessments of people presenting with ILI, management decisions and patient outcomes. (2) As proof of concept: conduct a pilot study evaluating the performance of the triage tools 'Community Assessment Tools' and 'Pandemic Medical Early Warning Score' to predict hospital admission and death in patients presenting with ILI to GPs during inter-pandemic winter seasons.
DESIGN: Prospective near real-time analysis of structured clinical assessments and anonymised linkage to data from EHRs. User experience was evaluated by semistructured interviews with participating GPs.
SETTING: Thirty GPs in England, Wales and Scotland, participating in the Clinical Practice Research Datalink. PARTICIPANTS: All people presenting with ILI.
INTERVENTIONS: None.
MAIN OUTCOME MEASURES: Study outcome is proof of concept through demonstration of data capture and near real-time analysis. Primary patient outcomes were hospital admission within 24 hours and death (all causes) within 30 days of GP assessment. Secondary patient outcomes included GP decision to prescribe antibiotics and/or influenza-specific antiviral drugs and/or refer to hospital - if admitted, the need for higher levels of care and length of hospital stay.
DATA SOURCES: Linked anonymised data from a web-based structured clinical assessment and primary care EHRs.
RESULTS: In the 24 months to April 2015, data from 704 adult and 159 child consultations by 30 GPs were captured. GPs referred 11 (1.6%) adults and six (3.8%) children to hospital. There were 13 (1.8%) deaths of adults and two (1.3%) of children. There were too few outcome events to draw any conclusions regarding the performance of the triage tools. GP interviews showed that although there were some difficulties with installation, the web-based data collection tool was quick and easy to use. Some GPs felt that a minimal monetary incentive would promote participation.
CONCLUSIONS: We have developed processes that allow capture and near real-time automated analysis of GP's clinical assessments and management decisions of people presenting with ILI.
FUTURE WORK: We will develop processes to include other EHR systems, attempt linkage to data on influenza surveillance and maintain processes in readiness for a future outbreak.
STUDY REGISTRATION: This study is registered as ISRCTN87130712 and UK Clinical Research Network 12827.
FUNDING: The National Institute for Health Research Health Technology Assessment programme. MGS is supported by the UK NIHR Health Protection Research Unit in Emerging and Zoonotic Infections
Teaching Programming with Generative AI Tools: Implications for students with different learning styles
This study explores the implications of teaching programming with generative AI (GenAI) tools for students with different learning styles. Specifically, we focus on frustration with learning to code as well as the student’s confidence in their ability to code with GenAI tools. We use the VARK learner profile for the learning styles of students. Using survey data from 48 students in a graduate programming course, we assessed how these learning styles and GenAI usage profiles impact students\u27 confidence and frustration when learning to program. Our findings reveal that certain learner profiles strongly predict frustration while certain other profile predict confidence. The findings suggest that visual and kinesthetic learners benefit more from GenAI tools, while auditory learners and beginners may require additional support. These results provide valuable insights for educators on tailoring GenAI integration in programming courses
- …
