631 research outputs found
Anisotropic Local Stress and Particle Hopping in a Deeply Supercooled Liquid
The origin of the microscopic motions that lead to stress relaxation in
deeply supercooled liquid remains unclear. We show that in such a liquid the
stress relaxation is locally anisotropic which can serve as the driving force
for the hopping of the system on its free energy surface. However, not all
hopping are equally effective in relaxing the local stress, suggesting that
diffusion can decouple from viscosity even at local level. On the other hand,
orientational relaxation is found to be always coupled to stress relaxation.Comment: 4 pages, 3 figure
What is the evidence for giving chemoprophylaxis to children or students attending the same preschool, school or college as a case of meningococcal disease?
We performed a systematic literature review to assess the effectiveness of chemoprophylaxis for contacts of sporadic cases of invasive meningococcal disease (IMD) in educational settings. No studies directly compared IMD risk in contacts with/without chemoprophylaxis. However, compared to the background incidence, an elevated IMD risk was identified in settings without a general recommendation for chemoprophylaxis in pre-schools [pooled risk difference (RD) 58·2/10⁵, 95% confidence interval (CI) 27·3-89·0] and primary schools (pooled RD 4·9/10⁵, 95% CI 2·9-6·9) in the ~30 days after contact with a sporadic IMD case, but not in other educational settings. Thus, limited but consistent evidence suggests the risk of IMD in pre-school contacts of sporadic IMD cases is significantly increased above the background risk, but lower than in household contacts (pooled RD for household contacts with no chemoprophylaxis vs. background incidence: 480·1/10⁵, 95% CI 321·5-639·9). We recommend chemoprophylaxis for pre-school contacts depending on an assessment of duration and closeness of contact
Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer
We study the response of an adsorbed monolayer under a driving force as a
model of sliding friction phenomena between two crystalline surfaces with a
boundary lubrication layer. Using Langevin-dynamics simulation, we determine
the nonlinear response in the direction transverse to a high symmetry direction
along which the layer is already sliding. We find that below a finite
transition temperature, there exist a critical depinning force and hysteresis
effects in the transverse response in the dynamical state when the adlayer is
sliding smoothly along the longitudinal direction.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Chemical trees minimizing energy and Hosoya index
The energy of a molecular graph is a popular parameter that is defined as the
sum of the absolute values of a graph's eigenvalues. It is well known that the
energy is related to the matching polynomial and thus also to the Hosoya index
via a certain Coulson integral. Trees minimizing the energy under various
additional conditions have been determined in the past, e.g., trees with a
given diameter or trees with a perfect matching. However, it is quite a natural
problem to minimize the energy of trees with bounded maximum degree--clearly,
the case of maximum degree 4 (so-called chemical trees) is the most important
one. We will show that the trees with given maximum degree that minimize the
energy are the same that have been shown previously to minimize the Hosoya
index and maximize the Merrifield-Simmons index, thus also proving a conjecture
due to Fischermann et al. Finally, we show that the minimal energy grows
linearly with the size of the trees, with explicitly computable growth
constants that only depend on the maximum degree
Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study
The last decade has seen an explosion in models that describe phenomena in
systems medicine. Such models are especially useful for studying signaling
pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to
showcase current mathematical and statistical techniques that enable modelers
to gain insight into (models of) gene regulation, and generate testable
predictions. We introduce a range of modeling frameworks, but focus on ordinary
differential equation (ODE) models since they remain the most widely used
approach in systems biology and medicine and continue to offer great potential.
We present methods for the analysis of a single model, comprising applications
of standard dynamical systems approaches such as nondimensionalization, steady
state, asymptotic and sensitivity analysis, and more recent statistical and
algebraic approaches to compare models with data. We present parameter
estimation and model comparison techniques, focusing on Bayesian analysis and
coplanarity via algebraic geometry. Our intention is that this (non exhaustive)
review may serve as a useful starting point for the analysis of models in
systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte
Nonlinear sliding friction of adsorbed overlayers on disordered substrates
We study the response of an adsorbed monolayer on a disordered substrate
under a driving force using Brownian molecular-dynamics simulation. We find
that the sharp longitudinal and transverse depinning transitions with
hysteresis still persist in the presence of weak disorder. However, the
transitions are smeared out in the strong disorder limit. The theoretical
results here provide a natural explanation for the recent data for the
depinning transition of Kr films on gold substrate.Comment: 8 pages, 8 figs, to appear in Phys. Rev.
30 years of collaboration
We highlight some of the most important cornerstones of the long standing and very fruitful collaboration of the Austrian Diophantine Number Theory research group and the Number Theory and Cryptography School of Debrecen. However, we do not plan to be complete in any sense but give some interesting data and selected results that we find particularly nice. At the end we focus on two topics in more details, namely a problem that origins from a conjecture of Rényi and Erdős (on the number of terms of the square of a polynomial) and another one that origins from a question of Zelinsky (on the unit sum number problem). This paper evolved from a plenary invited talk that the authors gaveat the Joint Austrian-Hungarian Mathematical Conference 2015, August 25-27, 2015 in Győr (Hungary)
Boundary lubrication properties of materials with expansive freezing
We have performed molecular dynamics simulations of solid-solid contacts
lubricated by a model fluid displaying many of the properties of water,
particularly its expansive freezing. Near the region where expansive freezing
occurs, the lubricating film remains fluid, and the friction force decreases
linearly as the shear velocity is reduced. No sign of stick-slip motion is
observed even at the lowest velocities. We give a simple interpretation of
these results, and suggest that in general good boundary lubrication properties
will be found in the family of materials with expansive freezing.Comment: Version to appear in Phys. Rev. Let
Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation
Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas
Opening the black box of energy modelling: Strategies and lessons learned
The global energy system is undergoing a major transition, and in energy planning and decision-making across governments, industry and academia, models play a crucial role. Because of their policy relevance and contested nature, the transparency and open availability of energy models and data are of particular importance. Here we provide a practical how-to guide based on the collective experience of members of the Open Energy Modelling Initiative (Openmod). We discuss key steps to consider when opening code and data, including determining intellectual property ownership, choosing a licence and appropriate modelling languages, distributing code and data, and providing support and building communities. After illustrating these decisions with examples and lessons learned from the community, we conclude that even though individual researchers' choices are important, institutional changes are still also necessary for more openness and transparency in energy research
- …
