32,180 research outputs found
Reflection beam isolator for submillimeter wavelengths
Magnetoplasma reflection beam isolators for submillimeter wave use are discussed. The basic configuration used is that of the Kerr transverse magneto-optical effect. Theoretical and experimental data at 337 microns using InSb as a plasma are given
Collocating Interface Objects: Zooming into Maps
May, Dean and Barnard [10] used a theoretically based model to argue that objects in a wide range of interfaces should be collocated following screen changes such as a zoom-in to detail. Many existing online maps do not follow this principle, but move a clicked point to the centre of the subsequent display, leaving the user looking at an unrelated location. This paper presents three experiments showing that collocating the point clicked on a map so that the detailed location appears in the place previously occupied by the overview location makes the map easier to use, reducing eye movements and interaction duration. We discuss the benefit of basing design principles on theoretical models so that they can be applied to novel situations, and so designers can infer when to use and not use them
The application of semiconductors to quasi- optical isolators for use at submillimeter wavelengths
Semiconductor application to quasi-optical isolators - nonreciprocal reflection beam isolator and far infrared isolators using Faraday rotatio
Zintl Chemistry for Designing High Efficiency Thermoelectric Materials
Zintl phases and related compounds are promising thermoelectric materials; for instance, high zT has been found in Yb_(14)MnSb_(11), clathrates, and the filled skutterudites. The rich solid-state chemistry of Zintl phases enables numerous possibilities for chemical substitutions and structural modifications that allow the fundamental transport parameters (carrier concentration, mobility, effective mass, and lattice thermal conductivity) to be modified for improved thermoelectric performance. For example, free carrier concentration is determined by the valence imbalance using Zintl chemistry, thereby enabling the rational optimization of zT. The low thermal conductivity values obtained in Zintl thermoelectrics arise from a diverse range of sources, including point defect scattering and the low velocity of optical phonon modes. Despite their complex structures and chemistry, the transport properties of many modern thermoelectrics can be understood using traditional models for heavily doped semiconductors
Transient currents in a molecular photo-diode
Light-induced charge transmission through a molecular junction (molecular
diode) is studied in the framework of a HOMO-LUMO model and in using a kinetic
description. Expressions are presented for the sequential (hopping) and direct
(tunneling) transient current components together with kinetic equations
governing the time-dependent populations of the neutral and charged molecular
states which participate in the current formation. Resonant and off-resonant
charge transmission processes are analyzed in detail. It is demonstrated that
the transient currents are associated with a molecular charging process which
is initiated by photo excitation of the molecule. If the coupling of the
molecule to the electrodes is strongly asymmetric the transient currents can
significantly exceed the steady state current.Comment: 17 pages, 12 figures, accepted for publication in Chemical Physic
Optimizing Thermoelectric Efficiency in La_(3−x)Te_4 via Yb Substitution
A low temperature, solid state synthesis technique has enabled the production of homogeneous samples of La_(3−x−y)Yb_yTe_4. This allows the substitution of divalent Yb to be utilized to optimize the thermoelectric performance in lanthanum telluride. The addition of Yb^(2+) changes the electrical transport properties in a manner that can be well understood using valence counting rules and a corresponding change in the Fermi energy. The substitution of Yb^(2+) for La^(3+) results in a threefold finer control over the carrier density n, thus allowing the optimum n ~ 0.3 × 10^(21) cm^(−3) to be both predicted and prepared. The net result is an improvement in thermoelectric efficiency, with zT reaching ~ 1.2 at 1273 K
Economic Standards for Pedestrian Areas for Disabled People: Results from Observation Work
1.1.1 The Institute for Transport Studies was invited by the
Transport and Road Research Laboratory to submit a research
proposal, with costs, aimed at establishing suitable "Ergonomic
Standards for Pedestrian Areas for Disabled People". The project
commenced on 1st July, 1986 and was split into two parts, with
part one involving four months' work over the period to 31st
December, 1986 and part two finishing on 30th April, 1988.
1.1.2
The -objectives of the study laid down in the design
brief by the Transport and Road Research Laboratory were:
a) To produce a guide to good practice for the design and
maintenance of footways and pedestrianised areas;
b) To provide, where possible, recommended standards for design
and maintenance.
The good practice guide and the recommended standards were to be
primarily aimed at disabled people and the elderly, but the
requirements of the able-bodied were also to be considered, as
were conflicts between the needs of different groups of user.
The economic implications of implementation and maintenance were
also to be detailed.
(Continues..
The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser multi-target combinatorial pulsed laser deposition
We report the effects of relative time delay of plasma plumes on thin garnet crystal films fabricated by dual-beam, combinatorial pulsed laser deposition. Relative plume delay was found to affect both the lattice constant and elemental composition of mixed Gd3Ga5O12 (GGG) and Gd3Sc2Ga5O12 (GSGG) films. Further analysis of the plasmas was undertaken using a Langmuir probe, which revealed that for relative plume delays shorter than ~200 µs, the second plume travels through a partial vacuum created by the first plume, leading to higher energy ion bombardment of the growing film. The resulting in-plane stresses are consistent with the transition to a higher value of lattice constant normal to the film plane that was observed around this delay value. At delays shorter than ~10 µs, plume propagation was found to overlap, leading to scattering of lighter ions from the plume and a change in stoichiometry of the resultant films
Classification and area estimation of land covers in Kansas using ground-gathered and LANDSAT digital data
Ground-gathered data and LANDSAT multispectral scanner (MSS) digital data from 1981 were analyzed to produce a classification of Kansas land areas into specific types called land covers. The land covers included rangeland, forest, residential, commercial/industrial, and various types of water. The analysis produced two outputs: acreage estimates with measures of precision, and map-type or photo products of the classification which can be overlaid on maps at specific scales. State-level acreage estimates were obtained and substate-level land cover classification overlays and estimates were generated for selected geographical areas. These products were found to be of potential use in managing land and water resources
- …
