738 research outputs found
Reconstruction Mechanism of FCC Transition-Metal (001) Surfaces
The reconstruction mechanism of (001) fcc transition metal surfaces is
investigated using a full-potential all-electron electronic structure method
within density-functional theory. Total-energy supercell calculations confirm
the experimental finding that a close-packed quasi-hexagonal overlayer
reconstruction is possible for the late 5-metals Ir, Pt, and Au, while it is
disfavoured in the isovalent 4 metals (Rh, Pd, Ag). The reconstructive
behaviour is driven by the tensile surface stress of the unreconstructed
surfaces; the stress is significantly larger in the 5 metals than in 4
ones, and only in the former case it overcomes the substrate resistance to the
required geometric rearrangement. It is shown that the surface stress for these
systems is due to charge depletion from the surface layer, and that the
cause of the 4th-to-5th row stress difference is the importance of relativistic
effects in the 5 series.Comment: RevTeX 3.0, 12 pages, 1 PostScript figure available upon request] 23
May 199
Effect of interface states on spin-dependent tunneling in Fe/MgO/Fe tunnel junctions
The electronic structure and spin-dependent tunneling in epitaxial
Fe/MgO/Fe(001) tunnel junctions are studied using first-principles
calculations. For small MgO barrier thickness the minority-spin resonant bands
at the two interfaces make a significant contribution to the tunneling
conductance for the antiparallel magnetization, whereas these bands are, in
practice, mismatched by disorder and/or small applied bias for the parallel
magnetization. This explains the experimentally observed decrease in tunneling
magnetoresistance (TMR) for thin MgO barriers. We predict that a monolayer of
Ag epitaxially deposited at the interface between Fe and MgO suppresses
tunneling through the interface band and may thus be used to enhance the TMR
for thin barriers.Comment: 4 pages, 3 eps figures (2 in color), revtex
Charge redistribution at Pd surfaces: ab initio grounds for tight-binding interatomic potentials
A simplified tight-binding description of the electronic structure is often
necessary for complex studies of surfaces of transition metal compounds. This
requires a self-consistent parametrization of the charge redistribution, which
is not obvious for late transition series elements (such as Pd, Cu, Au), for
which not only d but also s-p electrons have to be taken into account. We show
here, with the help of an ab initio FP-LMTO approach, that for these elements
the electronic charge is unchanged from bulk to the surface, not only per site
but also per orbital. This implies different level shifts for each orbital in
order to achieve this orbital neutrality rule. Our results invalidate any
neutrality rule which would allow charge redistribution between orbitals to
ensure a common rigid shift for all of them. Moreover, in the case of Pd, the
power law which governs the variation of band energy with respect to
coordination number, is found to differ significantly from the usual
tight-binding square root.Comment: 6 pages, 2 figures, Latex; Phys.Rev. B 56 (1997
Spin tunneling through an indirect barrier
Spin-dependent tunneling through an indirect bandgap barrier like the
GaAs/AlAs/GaAs heterostructure along [001] direction is studied by the
tight-binding method. The tunneling is characterized by the proportionality of
the Dresselhaus Hamiltonians at and points in the barrier and by
Fano resonances. The present results suggest that large spin polarization can
be obtained for energy windows that exceed significantly the spin splitting. We
also formulate two conditions that are necessary for the existence of energy
windows with large polarization.Comment: 19 pages, 7 figure
Electronic Structure and Lattice Relaxation Related to Fe in Mgo
The electronic structure of Fe impurity in MgO was calculated by the linear
muffin-tin orbital--full-potential method within the conventional local-density
approximation (LDA) and making use of the LDA+ formalism. The importance of
introducing different potentials, depending on the screened Coulomb integral
, is emphasized for obtaining a physically reasonable ground state of the
Fe ion configuration. The symmetry lowering of the ion electrostatic
field leads to the observed Jahn--Teller effect; related ligand relaxation
confined to tetragonal symmetry has been optimized based on the full-potential
total energy results. The electronic structure of the Fe ion is also
calculated and compared with that of Fe.Comment: 13 pages + 4 PostScript figures, Revtex 3.0, SISSA-CM-94-00
Ferromagnetic spin-polaron on complex lattices
We present a simpler derivation of the exact solution of a spin-polaron in a
ferromagnet and generalize it to complex lattices and/or longer range exchange
interactions. As a specific example, we analyze a two-dimensional MnO-like
lattice (as in the ferromagnetic layers in LaMnO) and discuss the
properties of the resulting spin-polaron in various regimes. At strong
couplings the solution is reminiscent of the Zhang-Rice singlet, however the
electronic wavefunction involved in the singlet is dependent on the momentum of
the singlet, and multiple bands may appear.Comment: 12 pages, 7 figure
An analysis of photoemission and inverse photoemission spectra of Si(111) and sulphur-passivated InP(001) surfaces
Photoemission (PES) and inverse-photoemission spectra (IPES) for the
sulphur-passivated InP(001) surface are compared with theoretical predictions
based on density-functional calculations. As a test case for our methods, we
also present a corresponding study of the better known Si(111) surface. The
reported spectra for InP(001)-S agree well with the calculated ones if the
surface is assumed to consist of a mixture of two phases, namely, the fully
S-covered -reconstructed structure, which contains four S atoms in
the surface unit-cell, and a structure containing two S and two P
atoms per unit cell. The latter has recently been identified in total-energy
calculations as well as in core-level spectra of S-passivated
Si(111)- is in excellent agreement with the calculations. The
comparison of the experimental-PES with our calculations provides additional
considerations regarding the nature of the sample surface. It is also found
that the commonly-used density-of-states approximation to the photo- and
inverse- photoemission spectra is not valid for these systems.Comment: Submitted to Phys. Rev. B; 6 postscript formatted pages; 7 figures in
gif format; postscript figures available upon reques
Exact results on the Kondo-lattice magnetic polaron
In this work we revise the theory of one electron in a ferromagnetically
saturated local moment system interacting via a Kondo-like exchange
interaction. The complete eigenstates for the finite lattice are derived. It is
then shown, that parts of these states lose their norm in the limit of an
infinite lattice. The correct (scattering) eigenstates are calculated in this
limit. The time-dependent Schr\"odinger equation is solved for arbitrary
initial conditions and the connection to the down-electron Green's function and
the scattering states is worked out. A detailed analysis of the down-electron
decay dynamics is given.Comment: 13 pages, 9 figures, accepted for publication in PR
Magnetic polarons and magnetoresistance in EuB6
EuB6 is a low carrier density ferromagnet which exhibits large
magnetoresistance, positive or negative depending on temperature. The formation
of magnetic polarons just above the magnetic critical temperature has been
suggested by spin-flip Raman scattering experiments. We find that the fact that
EuB6 is a semimetal has to be taken into account to explain its electronic
properties, including magnetic polarons and magnetoresistance.Comment: 6 pages, 1 figur
Stable and Metastable Structures of Cobalt on Cu(001): An ab initio Study
We report results of density-functional theory calculations on the
structural, magnetic, and electronic properties of (1x1)-structures of Co on
Cu(001) for coverages up to two monolayers. In particular we discuss the
tendency towards phase separation in Co islands and the possibility of
segregation of Cu on top of the Co-film. A sandwich structure consisting of a
bilayer Co-film covered by 1ML of Cu is found to be the lowest-energy
configuration. We also discuss a bilayer c(2x2)-alloy which may form due to
kinetic reasons, or be stabilized at strained surface regions. Furthermore, we
study the influence of magnetism on the various structures and, e.g., find that
Co adlayers induce a weak spin-density wave in the copper substrate.Comment: 11 pages including 4 figures. Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
- …
