23,679 research outputs found

    Physical and Psychological Implications of Risky Child Labor: A Study in Sylhet City, Bangladesh

    Get PDF
    In Bangladesh, children are accustomed to working in industrial and manufacturing plants, small scale factories, metal works, construction, as well as in many informal sector activities. Based on a survey conducted in Sylhet city, this study found that child workers are suffering from different physical and psychological problems and that more than half of them receive their medical assistance from local health care providers who have no recognized qualifications. The study maintains that working from an early age impedes the children’s physical growth and intellectual and psychological development, which then also has negative effects on their long-term health and earning potential.risky child labor, physical health, mental health, Bangladesh

    High capacity steganographic method based upon JPEG

    Get PDF
    The two most important aspects of any image-based steganographic system are the quality of the stegoimage and the capacity of the cover image. This paper proposes a novel and high capacity steganographic approach based on Discrete Cosine Transformation (DCT) and JPEG compression. JPEG technique divides the input image into non-overlapping blocks of 8x8 pixels and uses the DCT transformation. However, our proposed method divides the cover image into nonoverlapping blocks of 16x16 pixels. For each quantized DCT block, the least two-significant bits (2-LSBs) of each middle frequency coefficient are modified to embed two secret bits. Our aim is to investigate the data hiding efficiency using larger blocks for JPEG compression. Our experiment result shows that the proposed approach can provide a higher information hiding capacity than Jpeg-Jsteg and Chang et al. methods based on the conventional blocks of 8x8 pixels. Furthermore, the produced stego-images are almost identical to the original cover images

    Dual Rate Control for Security in Cyber-physical Systems

    Full text link
    We consider malicious attacks on actuators and sensors of a feedback system which can be modeled as additive, possibly unbounded, disturbances at the digital (cyber) part of the feedback loop. We precisely characterize the role of the unstable poles and zeros of the system in the ability to detect stealthy attacks in the context of the sampled data implementation of the controller in feedback with the continuous (physical) plant. We show that, if there is a single sensor that is guaranteed to be secure and the plant is observable from that sensor, then there exist a class of multirate sampled data controllers that ensure that all attacks remain detectable. These dual rate controllers are sampling the output faster than the zero order hold rate that operates on the control input and as such, they can even provide better nominal performance than single rate, at the price of higher sampling of the continuous output

    Tin monochalcogenide heterostructures as mechanically rigid infrared bandgap semiconductors

    Full text link
    Based on first-principles density functional calculations, we show that SnS and SnSe layers can form mechanically rigid heterostructures with the constituent puckered or buckled monolayers. Due to the strong interlayer coupling, the electronic wavefunctions of the conduction and valence band edges are delocalized across the heterostructure. The resultant bandgap of the heterostructures reside in the infrared region. With strain engineering, the heterostructure bandgap undergoes transition from indirect to direct in the puckered phase. Our results show that there is a direct correlation between the electronic wavefunction and the mechanical rigidity of the layered heterostructure

    Sum-Rate Analysis for High Altitude Platform (HAP) Drones with Tethered Balloon Relay

    Get PDF
    High altitude platform (HAP) drones can provide broadband wireless connectivity to ground users in rural areas by establishing line-of-sight (LoS) links and exploiting effective beamforming techniques. However, at high altitudes, acquiring the channel state information (CSI) for HAPs, which is a key component to perform beamforming, is challenging. In this paper, by exploiting an interference alignment (IA) technique, a novel method for achieving the maximum sum-rate in HAP-based communications without CSI is proposed. In particular, to realize IA, a multiple-antenna tethered balloon is used as a relay between multiple HAP drones and ground stations (GSs). Here, a multiple-input multiple-output X network system is considered. The capacity of the considered M*N X network with a tethered balloon relay is derived in closed-form. Simulation results corroborate the theoretical findings and show that the proposed approach yields the maximum sum-rate in multiple HAPs-GSs communications in absence of CSI. The results also show the existence of an optimal balloon's altitude for which the sum-rate is maximized.Comment: Accepted in IEEE Communications Letter
    corecore