88 research outputs found
Constraining the Milky Way potential using the dynamical kinematic substructures
We present a method to constrain the potential of the non-axisymmetric
components of the Galaxy using the kinematics of stars in the solar
neighborhood. The basic premise is that dynamical substructures in phase-space
(i.e. due to the bar and/or spiral arms) are associated with families of
periodic or irregular orbits, which may be easily identified in orbital
frequency space. We use the "observed" positions and velocities of stars as
initial conditions for orbital integrations in a variety of gravitational
potentials. We then compute their characteristic frequencies, and study the
structure present in the frequency maps. We find that the distribution of
dynamical substructures in velocity- and frequency-space is best preserved when
the integrations are performed in the "true" gravitational potential.Comment: 2 pages, 4 figures, to appear in the proceedings of "Assembling the
Puzzle of the Milky Way", Le Grand Bornand (Apr. 17-22, 2011
Schwarzschild models of the Sculptor dSph galaxy
We have developed a spherically symmetric dynamical model of a dwarf
spheroidal galaxy using the Schwarzschild method. This type of modelling yields
constraints both on the total mass distribution (e.g. enclosed mass and scale
radius) as well as on the orbital structure of the system modelled (e.g.
velocity anisotropy). Therefore not only can we derive the dark matter content
of these systems, but also explore possible formation scenarios. Here we
present preliminary results for the Sculptor dSph. We find that the mass of
Sculptor within 1kpc is 8.5\times10^(7\pm0.05) M\odot, its anisotropy profile
is tangentially biased and slightly more isotropic near the center. For an NFW
profile, the preferred concentration (~15) is compatible with cosmological
models. Very cuspy density profiles (steeper than NFW) are strongly disfavoured
for Sculptor.Comment: 2 pages, 4 figures, to appear in the proceedings of "Assembling the
Puzzle of the Milky Way", Le Grand Bornand (Apr. 17-22, 2011
Beta reduction constraints
The constraint language for lambda structures (CLLS) can model lambda terms that are known only partially. In this paper, we introduce beta reduction constraints to describe beta reduction steps between partially known lambda terms. We show that beta reduction constraints can be expressed in an extension of CLLS by group parallelism. We then extend a known semi-decision procedure for CLLS to also deal with group parallelism and thus with beta-reduction constraints
Recommended from our members
The SDSS-III APOGEE Radial Velocity Survey Of M Dwarfs. I. Description Of The Survey And Science Goals
We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR 10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a v sin i precision of similar to 2 km s(-1) a measurement floor at v sin i = 4 km s(-1). This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at similar to 100-200 m s(-1)), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic a sin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m s(-1) for bright M dwarfs. With three or more epochs, this precision is adequate to detect substellar companions, including giant planets with short orbital periods, and flag them for higher-cadence followup. We present preliminary, and promising, results of this telluric modeling technique in this paper.Center for Exoplanets and Habitable WorldsPennsylvania State UniversityEberly College of SciencePennsylvania Space Grant ConsortiumNSF AST 1006676, AST 1126413National Science FoundationNational Aeronautics and Space Administration NNX-08AE38A, NNX13AB03GAlfred P. Sloan FoundationU.S. Department of Energy Oce of ScienceUniversity of ArizonaBrazilian Participation GroupBrookhaven National LaboratoryUniversity of CambridgeCarnegie Mellon UniversityUniversity of FloridaFrench Participation GroupGerman Participation GroupHarvard UniversityInstituto de Astrosica de CanariasMichigan State/Notre Dame/JINA Participation GroupJohns Hopkins UniversityLawrence Berkeley National LaboratoryMax Planck Institute for AstrophysicsMax Planck Institute for Extraterrestrial PhysicsNew Mexico State UniversityNew York UniversityOhio State UniversityUniversity of PortsmouthPrinceton UniversitySpanish Participation GroupUniversity of TokyoUniversity of UtahVanderbilt UniversityUniversity of VirginiaUniversity of WashingtonYale UniversityMcDonald Observator
Gaia Focused Product Release: A catalogue of sources around quasars to search for strongly lensed quasars
Context. Strongly lensed quasars are fundamental sources for cosmology. The
Gaia space mission covers the entire sky with the unprecedented resolution of
" in the optical, making it an ideal instrument to search for
gravitational lenses down to the limiting magnitude of 21. Nevertheless, the
previous Gaia Data Releases are known to be incomplete for small angular
separations such as those expected for most lenses. Aims. We present the Data
Processing and Analysis Consortium GravLens pipeline, which was built to
analyse all Gaia detections around quasars and to cluster them into sources,
thus producing a catalogue of secondary sources around each quasar. We analysed
the resulting catalogue to produce scores that indicate source configurations
that are compatible with strongly lensed quasars. Methods. GravLens uses the
DBSCAN unsupervised clustering algorithm to detect sources around quasars. The
resulting catalogue of multiplets is then analysed with several methods to
identify potential gravitational lenses. We developed and applied an outlier
scoring method, a comparison between the average BP and RP spectra of the
components, and we also used an extremely randomised tree algorithm. These
methods produce scores to identify the most probable configurations and to
establish a list of lens candidates. Results. We analysed the environment of 3
760 032 quasars. A total of 4 760 920 sources, including the quasars, were
found within 6" of the quasar positions. This list is given in the Gaia
archive. In 87\% of cases, the quasar remains a single source, and in 501 385
cases neighbouring sources were detected. We propose a list of 381 lensed
candidates, of which we identified 49 as the most promising. Beyond these
candidates, the associate tables in this Focused Product Release allow the
entire community to explore the unique Gaia data for strong lensing studies
further.Comment: 35 pages, 60 figures, accepted for publication by Astronomy and
Astrophysic
Pulsations in main sequence OBAF-type stars
CONTEXT: The third Gaia data release provides photometric time series covering 34 months for about 10 million stars. For many of those stars, a characterisation in Fourier space and their variability classification are also provided. This paper focuses on intermediate- to high-mass (IHM) main sequence pulsators (M ≥ 1.3 M⊙) of spectral types O, B, A, or F, known as β Cep, slowly pulsating B (SPB), δ Sct, and γ Dor stars. These stars are often multi-periodic and display low amplitudes, making them challenging targets to analyse with sparse time series. AIMS: We investigate the extent to which the sparse Gaia DR3 data can be used to detect OBAF-type pulsators and discriminate them from other types of variables. We aim to probe the empirical instability strips and compare them with theoretical predictions. The most populated variability class is that of the δ Sct variables. For these stars, we aim to confirm their empirical period-luminosity (PL) relation, and verify the relation between their oscillation amplitude and rotation. METHODS: All datasets used in this analysis are part of the Gaia DR3 data release. The photometric time series were used to perform a Fourier analysis, while the global astrophysical parameters necessary for the empirical instability strips were taken from the Gaia DR3 gspphot tables, and the v sin i data were taken from the Gaia DR3 esphs tables. The δ Sct PL relation was derived using the same photometric parallax method as the one recently used to establish the PL relation for classical Cepheids using Gaia data. RESULTS: We show that for nearby OBAF-type pulsators, the Gaia DR3 data are precise and accurate enough to pinpoint them in the Hertzsprung-Russell (HR) diagram. We find empirical instability strips covering broader regions than theoretically predicted. In particular, our study reveals the presence of fast rotating gravity-mode pulsators outside the strips, as well as the co-existence of rotationally modulated variables inside the strips as reported before in the literature. We derive an extensive period–luminosity relation for δ Sct stars and provide evidence that the relation features different regimes depending on the oscillation period. We demonstrate how stellar rotation attenuates the amplitude of the dominant oscillation mode of δ Sct stars. CONCLUSIONS: The Gaia DR3 time-series photometry already allows for the detection of the dominant (non-)radial oscillation mode in about 100 000 intermediate- and high-mass dwarfs across the entire sky. This detection capability will increase as the time series becomes longer, allowing the additional delivery of frequencies and amplitudes of secondary pulsation modes
SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems
Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II),
SDSS-III is a program of four spectroscopic surveys on three scientific themes:
dark energy and cosmological parameters, the history and structure of the Milky
Way, and the population of giant planets around other stars. In keeping with
SDSS tradition, SDSS-III will provide regular public releases of all its data,
beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an
overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5
million massive galaxies and Lya forest spectra of 150,000 quasars, using the
BAO feature of large scale structure to obtain percent-level determinations of
the distance scale and Hubble expansion rate at z<0.7 and at z~2.5. SEGUE-2,
which is now completed, measured medium-resolution (R=1800) optical spectra of
118,000 stars in a variety of target categories, probing chemical evolution,
stellar kinematics and substructure, and the mass profile of the dark matter
halo from the solar neighborhood to distances of 100 kpc. APOGEE will obtain
high-resolution (R~30,000), high signal-to-noise (S/N>100 per resolution
element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars,
measuring separate abundances for ~15 elements per star and creating the first
high-precision spectroscopic survey of all Galactic stellar populations (bulge,
bar, disks, halo) with a uniform set of stellar tracers and spectral
diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars
with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to
detect giant planets with periods up to two years, providing an unprecedented
data set for understanding the formation and dynamical evolution of giant
planet systems. (Abridged)Comment: Revised to version published in The Astronomical Journa
<em>Euclid</em>: the potential of slitless infrared spectroscopy: a z = 5.4 quasar and new ultracool dwarfs
\ua9 2025 The Author(s). We demonstrate the potential of Euclid \u27s slitless spectroscopy to discover high-redshift (5$]]>) quasars and their main photometric contaminant, ultracool dwarfs. Sensitive infrared spectroscopy from space is able to efficiently identify both populations, as demonstrated by Euclid Near-Infrared Spectrometer and Photometer Red Grism (NISP) spectra of the newly discovered quasar EUCL J181530.01652054.0, as well as several ultracool dwarfs in the Euclid Deep Field North and the Euclid Early Release Observation field Abell 2764. The ultracool dwarfs were identified by cross-correlating their spectra with templates. The quasar was identified by its strong and broad and emission lines in the NISP 1206-1892 nm spectrum, and confirmed through optical spectroscopy from the Large Binocular Telescope. The NISP Blue Grism (NISP) 926-1366 nm spectrum confirms and emission. NISP can find bright quasars at and, redshift ranges that are challenging for photometric selection due to contamination from ultracool dwarfs. EUCL J181530.01652054.0 is a high-excitation, broad absorption line quasar detected at 144 MHz by the LOw-Frequency Array (W Hz). The quasar has a bolometric luminosity of and is powered by a black hole. The discovery of this bright quasar is noteworthy as fewer than one such object was expected in the 20 deg surveyed. This finding highlights the potential and effectiveness of NISP spectroscopy in identifying rare, luminous high-redshift quasars, previewing the census of these sources that Euclid\u27s slitless spectroscopy will deliver over about deg of the sky
PLATO as it is:a legacy mission for Galactic archaeology
Deciphering the assembly history of the Milky Way is a formidable task, which becomes possible only if one can produce high-resolution chrono-chemo-kinematical maps of the Galaxy. Data from large-scale astrometric and spectroscopic surveys will soon provide us with a well-defined view of the current chemo-kinematical structure of the Milky Way, but it will only enable a blurred view on the temporal sequence that led to the present-day Galaxy. As demonstrated by the (ongoing) exploitation of data from the pioneering photometric missions CoRoT, Kepler, and K2, asteroseismology provides the way forward: solar-like oscillating giants are excellent evolutionary clocks thanks to the availability of seismic constraints on their mass and to the tight age–initial mass relation they adhere to. In this paper we identify five key outstanding questions relating to the formation and evolution of the Milky Way that will need precise and accurate ages for large samples of stars to be addressed, and we identify the requirements in terms of number of targets and the precision on the stellar properties that are needed to tackle such questions. By quantifying the asteroseismic yields expected from PLATO for red giant stars, we demonstrate that these requirements are within the capabilities of the current instrument design, provided that observations are sufficiently long to identify the evolutionary state and allow robust and precise determination of acoustic-mode frequencies. This will allow us to harvest data of sufficient quality to reach a 10% precision in age. This is a fundamental prerequisite to then reach the more ambitious goal of a similar level of accuracy, which will be possible only if we have at hand a careful appraisal of systematic uncertainties on age deriving from our limited understanding of stellar physics, a goal that conveniently falls within the main aims of PLATO's core science. We therefore strongly endorse PLATO's current design and proposed observational strategy, and conclude that PLATO, as it is, will be a legacy mission for Galactic archaeology
- …
