2,272 research outputs found

    Coupled cluster benchmarks of water monomers and dimers extracted from DFT liquid water: the importance of monomer deformations

    Full text link
    To understand the performance of popular density-functional theory (DFT) exchange-correlation (xc) functionals in simulations of liquid water, water monomers and dimers were extracted from a PBE simulation of liquid water and examined with coupled cluster with single and double excitations plus a perturbative correction for connected triples [CCSD(T)]. CCSD(T) reveals that most of the dimers are unbound compared to two gas phase equilibrium water monomers, largely because monomers within the liquid have distorted geometries. Of the three xc functionals tested, PBE and BLYP systematically underestimate the cost of the monomer deformations and consequently predict too large dissociation energies between monomers within the dimers. This is in marked contrast to how these functionals perform for an equilibrium water dimer and other small water clusters in the gas phase, which only have moderately deformed monomers. PBE0 reproduces the CCSD(T) monomer deformation energies very well and consequently the dimer dissociation energies much more accurately than PBE and BLYP. Although this study is limited to water monomers and dimers, the results reported here may provide an explanation for the overstructured radial distribution functions routinely observed in BLYP and PBE simulations of liquid water and are of relevance to water in other phases and to other associated molecular liquids.Comment: 10 pages, 8 figures, Submitted to Journal of Chemical Physics, Related information can be found in http://www.fhi-berlin.mpg.de/th

    Quantum size effect in Pb(100) films: the role of symmetry and implication for film growth

    Get PDF
    We show from density-functional calculations that Pb(100) thin films exhibit quantum size effect with a bilayer periodicity in film energies, film relaxations, and work functions, which originate from different symmetry of the stacking geometry of odd and even layer films. The bilayer periodicity of the film energy is argued to survive on a semiconductor substrate, which should allow the growth of ``magically'' thick even-layer Pb(100) films. Furthermore, it is found that the quantum well states in a simple metal film can be classified into σ\sigma-bonded and π\pi-bonded states, which quantize independently

    Density-functional theory study of half-metallic heterostructures: interstitial Mn in Si

    Full text link
    Using density-functional theory within the generalized gradient approximation, we show that Si-based heterostructures with 1/4 layer δ\delta-doping of {\em interstitial} Mn (Mnint_{\mathrm int}) are half-metallic. For Mnint_{\mathrm int} concentrations of 1/2 or 1 layer, the states induced in the band gap of δ\delta-doped heterostructures still display high spin polarization, about 85% and 60%, respectively. The proposed heterostructures are more stable than previously assumed δ\delta-layers of {\em substitutional} Mn. Contrary to wide-spread belief, the present study demonstrates that {\em interstitial} Mn can be utilized to tune the magnetic properties of Si, and thus provides a new clue for Si-based spintronics materials.Comment: 5 pages, 4 figures, PRL accepte

    CO oxidation at Pd(100): A first-principles constrained thermodynamics study

    Full text link
    The possible formation of oxides or thin oxide films (surface oxides) on late transition metal surfaces is recently being recognized as an essential ingredient when aiming to understand catalytic oxidation reactions under technologically relevant gas phase conditions. Using the CO oxidation at Pd(100) as example, we investigate the composition and structure of this model catalyst surface over a wide range of (T,p)-conditions within a multiscale modeling approach where density-functional theory is linked to thermodynamics. The results show that under the catalytically most relevant gas phase conditions a thin surface oxide is the most stable "phase" and that the system is actually very close to a transition between this oxidic state and a reduced state in form of a CO covered Pd(100) surface.Comment: 13 pages including 7 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Non-Adiabatic Potential-Energy Surfaces by Constrained Density-Functional Theory

    Get PDF
    Non-adiabatic effects play an important role in many chemical processes. In order to study the underlying non-adiabatic potential-energy surfaces (PESs), we present a locally-constrained density-functional theory approach, which enables us to confine electrons to sub-spaces of the Hilbert space, e.g. to selected atoms or groups of atoms. This allows to calculate non-adiabatic PESs for defined charge and spin states of the chosen subsystems. The capability of the method is demonstrated by calculating non-adiabatic PESs for the scattering of a sodium and a chlorine atom, for the interaction of a chlorine molecule with a small metal cluster, and for the dissociation of an oxygen molecule at the Al(111) surface.Comment: 11 pages including 7 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Out of equilibrium dynamics of coherent non-abelian gauge fields

    Full text link
    We study out-of-equilibrium dynamics of intense non-abelian gauge fields. Generalizing the well-known Nielsen-Olesen instabilities for constant initial color-magnetic fields, we investigate the impact of temporal modulations and fluctuations in the initial conditions. This leads to a remarkable coexistence of the original Nielsen-Olesen instability and the subdominant phenomenon of parametric resonance. Taking into account that the fields may be correlated only over a limited transverse size, we model characteristic aspects of the dynamics of color flux tubes relevant in the context of heavy-ion collisions.Comment: 12 pages, 10 figures; PRD version, minor change

    First-principles study of thin magnetic transition-metal silicide films on Si(001)

    Get PDF
    In order to combine silicon technology with the functionality of magnetic systems, a number of ferromagnetic (FM) materials have been suggested for the fabrication of metal/semiconductor heterojunctions. In this work, we present a systematic study of several candidate materials in contact with the Si surface. We employ density-functional theory calculations to address the thermodynamic stability and magnetism of both pseudomorphic CsCl-like MMSi (MM=Mn, Fe, Co, Ni) thin films and Heusler alloy M2M_2MnSi (MM=Fe, Co, Ni) films on Si(001). Our calculations show that Si-termination of the MMSi films is energetically preferable during epitaxy since it minimizes the energetic cost of broken bonds at the surface. Moreover, we can explain the calculated trends in thermodynamic stability of the MMSi thin films in terms of the MM-Si bond-strength and the MM 3d orbital occupation. From our calculations, we predict that ultrathin MnSi films are FM with sizable spin magnetic moments at the Mn atoms, while FeSi and NiSi films are nonmagnetic. However, CoSi films display itinerant ferromagnetism. For the M2M_2MnSi films with Heusler-type structure, the MnSi termination is found to have the highest thermodynamic stability. In the FM ground state, the calculated strength of the effective coupling between the magnetic moments of Mn atoms within the same layer approximately scales with the measured Curie temperatures of the bulk M2M_2MnSi compounds. In particular, the Co2_2MnSi/Si(001) thin film has a robust FM ground state as in the bulk, and is found to be stable against a phase separation into CoSi/Si(001) and MnSi/Si(001) films. Hence this material is of possible use in FM-Si heterojunctions and deserves further experimental investigations.Comment: 13 pages, 8 figure
    corecore