829 research outputs found
Suprathermal viscosity of dense matter
Motivated by the existence of unstable modes of compact stars that eventually
grow large, we study the bulk viscosity of dense matter, taking into account
non-linear effects arising in the large amplitude regime, where the deviation
mu_Delta of the chemical potentials from chemical equilibrium fulfills mu_Delta
> T. We find that this supra-thermal bulk viscosity can provide a potential
mechanism for saturating unstable modes in compact stars since the viscosity is
strongly enhanced. Our study confirms previous results on strange quark matter
and shows that the suprathermal enhancement is even stronger in the case of
hadronic matter. We also comment on the competition of different weak channels
and the presence of suprathermal effects in various color superconducting
phases of dense quark matter.Comment: 8 page
Impact of r-modes on the cooling of neutron stars
Studying the frequency and temperature evolution of a compact star can give
us valuable information about the microscopic properties of the matter inside
the star. In this paper we study the effect of dissipative reheating of a
neutron star due to r-mode oscillations on its temperature evolution. We find
that there is still an impact of an r-mode phase on the temperature long after
the star has left the instability region and the r-mode is damped completely.
With accurate temperature measurements it may be possible to detect this trace
of a previous r-mode phase in observed pulsars.Comment: 7 pages, 5 figures, Proceedings of QCD@work 2012 International
Workshop on QCD Theory and Experimen
Large amplitude behavior of the bulk viscosity of dense matter
We study the bulk viscosity of dense matter, taking into account non-linear
effects which arise in the large amplitude "supra-thermal" region where the
deviation of the chemical potentials from chemical equilibrium
fulfills . This regime is relevant to unstable modes such as
r-modes, which grow in amplitude until saturated by non-linear effects. We
study the damping due to direct and modified Urca processes in hadronic matter,
and due to nonleptonic weak interactions in strange quark matter. We give
general results valid for an arbitrary equation of state of dense matter and
find that the viscosity can be strongly enhanced by supra-thermal effects. Our
study confirms previous results on quark matter and shows that the non-linear
enhancement is even stronger in the case of hadronic matter. Our results can be
applied to calculations of the r-mode-induced spin-down of fast-rotating
neutron stars, where the spin-down time will depend on the saturation amplitude
of the r-modeComment: 15 pages, 11 figure
Viscous damping of r-modes: Small amplitude instability
We study the viscous damping of r-modes of compact stars and analyze in
detail the regions where small amplitude modes are unstable to the emission of
gravitational radiation. We present general expressions for the viscous damping
times for arbitrary forms of interacting dense matter and derive general
semi-analytic results for the boundary of the instability region. These results
show that many aspects, like in particular the physically important minima of
the instability boundary, are surprisingly insensitive to detailed microscopic
properties of the considered form of matter. Our general expressions are
applied to the cases of hadronic stars, strange stars, and hybrid stars, and we
focus on equations of state that are compatible with the recent measurement of
a heavy compact star. We find that hybrid stars with a sufficiently small core
can "masquerade" as neutron stars and feature an instability region that is
indistinguishable from that of a neutron star, whereas neutron stars with a
core density high enough to allow direct Urca reactions feature a notch on the
right side of the instability region.Comment: 22 pages, 16 figures, published versio
Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy
Optical resonant microcavities with ultra high quality factors are widely
used for biosensing. Until now, the primary method of detection has been based
upon tracking the resonant wavelength shift as a function of biodetection
events. One of the sources of noise in all resonant-wavelength shift
measurements is the noise due to intensity fluctuations of the laser source. An
alternative approach is to track the change in the quality factor of the
optical cavity by using phase shift cavity ring down spectroscopy, a technique
which is insensitive to the intensity fluctuations of the laser source. Here,
using biotinylated microtoroid resonant cavities, we show simultaneous
measurement of the quality factor and the wavelength shift by using phase shift
cavity ring down spectroscopy. These measurements were performed for
disassociation phase of biotin-streptavidin reaction. We found that the
disassociation curves are in good agreement with the previously published
results. Hence, we demonstrate not only the application of phase shift cavity
ring down spectroscopy to microcavities in the liquid phase but also
simultaneous measurement of the quality factor and the wavelength shift for the
microcavity biosensors in the application of kinetics measurements
Viscous damping of r-modes: Large amplitude saturation
We analyze the viscous damping of r-mode oscillations of compact stars,
taking into account non-linear viscous effects in the large-amplitude regime.
The qualitatively different cases of hadronic stars, strange quark stars, and
hybrid stars are studied. We calculate the viscous damping times of r-modes,
obtaining numerical results and also general approximate analytic expressions
that explicitly exhibit the dependence on the parameters that are relevant for
a future spindown evolution calculation. The strongly enhanced damping of large
amplitude oscillations leads to damping times that are considerably lower than
those obtained when the amplitude dependence of the viscosity is neglected.
Consequently, large-amplitude viscous damping competes with the gravitational
instability at all physical frequencies and could stop the r-mode growth in
case this is not done before by non-linear hydrodynamic mechanisms.Comment: 18 pages, 17 figures, changed convention for the r-mode amplitude,
version to be published in PR
Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects
Bulk silicon carbide (SiC) is a very promising material system for
bio-applications and quantum sensing. However, its optical activity lies beyond
the near infrared spectral window for in-vivo imaging and fiber communications
due to a large forbidden energy gap. Here, we report the fabrication of SiC
nanocrystals and isolation of different nanocrystal fractions ranged from 600
nm down to 60 nm in size. The structural analysis reveals further fragmentation
of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline
quality, separated by amorphization areas. We use neutron irradiation to create
silicon vacancies, demonstrating near infrared photoluminescence. Finally, we
detect, for the first time, room-temperature spin resonances of these silicon
vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use
them not only as in-vivo luminescent markers, but also as magnetic field and
temperature sensors, allowing for monitoring various physical, chemical and
biological processes.Comment: 5 pages, 4 figure
Mode Bifurcation and Fold Points of Complex Dispersion Curves for the Metamaterial Goubau Line
In this paper the complex dispersion curves of the four lowest-order
transverse magnetic modes of a dielectric Goubau line () are
compared with those of a dispersive metamaterial Goubau line. The vastly
different dispersion curve structure for the metamaterial Goubau line is
characterized by unusual features such as mode bifurcation, complex fold
points, both proper and improper complex modes, and merging of complex and real
modes
- …
