37,577 research outputs found

    Dynamics of vitrimers: defects as a highway to stress relaxation

    Get PDF
    We propose a coarse-grained model to investigate stress relaxation in star-polymer networks induced by dynamic bond exchange processes. We show how the swapping mechanism, once activated, allows the network to reconfigure, exploring distinct topological configurations, all of them characterised by complete extent of reaction. Our results reveal the important role played by topological defects in mediating the exchange reaction and speeding up stress relaxation. The model provides a representation of the dynamics in vitrimers, a new class of polymers characterized by bond swap mechanisms which preserve the total number of bonds, as well as in other bond-exchange materials.Comment: 5 pages, 5 figures, with 6 pages SI appende

    On the Graceful Game

    Get PDF
    A graceful labeling of a graph GG with mm edges consists of labeling the vertices of GG with distinct integers from 00 to mm such that, when each edge is assigned as induced label the absolute difference of the labels of its endpoints, all induced edge labels are distinct. Rosa established two well known conjectures: all trees are graceful (1966) and all triangular cacti are graceful (1988). In order to contribute to both conjectures we study graceful labelings in the context of graph games. The Graceful game was introduced by Tuza in 2017 as a two-players game on a connected graph in which the players Alice and Bob take turns labeling the vertices with distinct integers from 0 to mm. Alice's goal is to gracefully label the graph as Bob's goal is to prevent it from happening. In this work, we study winning strategies for Alice and Bob in complete graphs, paths, cycles, complete bipartite graphs, caterpillars, prisms, wheels, helms, webs, gear graphs, hypercubes and some powers of paths

    Demonstration of a programmable source of two-photon multiqubit entangled states

    Get PDF
    We suggest and demonstrate a novel source of two-photon multipartite entangled states which exploits the transverse spatial structure of spontaneous parametric downconversion together with a programmable spatial light modulator (SLM). The 1D SLM is used to perform polarization entanglement purification and to realize arbitrary phase-gates between polarization and momentum degrees of freedom of photons. We experimentally demonstrate our scheme by generating two-photon three qubit linear cluster states with high fidelity using a diode laser pump with a limited coherence time and power on the crystal as low as 2.5$mW.Comment: 5 pages, 4 figures, to appear on PR

    Dynamically localized systems: entanglement exponential sensitivity and efficient quantum simulations

    Full text link
    We study the pairwise entanglement present in a quantum computer that simulates a dynamically localized system. We show that the concurrence is exponentially sensitive to changes in the Hamiltonian of the simulated system. Moreover, concurrence is exponentially sensitive to the ``logic'' position of the qubits chosen. These sensitivities could be experimentally checked efficiently by means of quantum simulations with less than ten qubits. We also show that the feasibility of efficient quantum simulations is deeply connected to the dynamical regime of the simulated system.Comment: 5 pages, 6 figure

    Experimental measurement technique for the assessment of the fuel crossover diffusion coefficient in the membrane electrode assembly of a direct methanol fuel cell

    Get PDF
    Since the cross-over still seems to be the main issue of the direct methanol fuel cells, an experimental evaluation of the diffusive cross-over is performed. Even if the relationship of the rate through the membrane is the sum of the three terms of diffusive, osmotic and drag, the diffusive component is also present at open circuit lowering the Open Circuit Voltage of the single cell up to 50 % with respect to the Nernst potential. The goal of the research is to develop a direct measurement technique of the crossover that can provide the effective values of the parameters that characterize the membrane electrode assembly. The experimental set up consists in the pressure, flow and temperature control and acquisition using Labview. A sensitive analysis for three values of temperatures at 60°C, 65°C and 70°C is performed for first. Then, a small overpressure was generated in the cathode side by a valve located at the cathode outlet. A set of pressure were analysed for 0, 30 and 90 mbar of overpressure at the cathode. The tested fuel cell has a commercial Nafion 117 membrane and carbon paper gas diffusion layers 700 cm2 large. Preliminary results show that the differential concentration term seems to be significantly larger than the osmotic term. The diffusion coefficients are useful for fuel cell modelling and for the calibration of the operating conditions in the sensor less DMFC systems

    Homodyne detection as a near-optimum receiver for phase-shift keyed binary communication in the presence of phase diffusion

    Full text link
    We address binary optical communication channels based on phase-shift keyed coherent signals in the presence of phase diffusion. We prove theoretically and demonstrate experimentally that a discrimination strategy based on homodyne detection is robust against this kind of noise for any value of the channel energy. Moreover, we find that homodyne receiver beats the performance of Kennedy receiver as the signal energy increases, and achieves the Helstrom bound in the limit of large noise
    corecore