745 research outputs found
Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime
The highly dynamical, complex nature of the solar atmosphere naturally
implies the presence of waves in a topologically varied magnetic environment.
Here, the interaction of waves with topological features such as null points is
inevitable and potentially important for energetics. The low resistivity of the
solar coronal plasma implies that non-MHD effects should be considered in
studies of magnetic energy release in this environment. This paper investigates
the role of the Hall term in the propagation and dissipation of waves, their
interaction with 2D magnetic X-points and the nature of the resulting
reconnection. A Lagrangian remap shock-capturing code (Lare2d) is used to study
the evolution of an initial fast magnetoacoustic wave annulus for a range of
values of the ion skin depth in resistive Hall MHD. A magnetic null-point
finding algorithm is also used to locate and track the evolution of the
multiple null-points that are formed in the system. Depending on the ratio of
ion skin depth to system size, our model demonstrates that Hall effects can
play a key role in the wave-null interaction. In particular, the initial
fast-wave pulse now consists of whistler and ion-cyclotron components; the
dispersive nature of the whistler wave leads to (i) earlier interaction with
the null, (ii) the creation of multiple additional, transient nulls and, hence,
an increased number of energy release sites. In the Hall regime, the relevant
timescales (such as the onset of reconnection and the period of the oscillatory
relaxation) of the system are reduced significantly, and the reconnection rate
is enhanced.Comment: 13 pages, 10 figure
Generalized Chaplygin gas model, supernovae and cosmic topology
In this work we study to which extent the knowledge of spatial topology may
place constraints on the parameters of the generalized Chaplygin gas (GCG)
model for unification of dark energy and dark matter. By using both the
Poincar\'e dodecahedral and binary octahedral spaces as the observable spatial
topologies, we examine the current type Ia supernovae (SNe Ia) constraints on
the GCG model parameters. We show that the knowledge of spatial topology does
provide additional constraints on the parameter of the GCG model but does
not lift the degeneracy of the parameter.Comment: Revtex 4, 8 pages, 10 figures, 1 table; version to match the
published on
Topological Lensing in Spherical Spaces
This article gives the construction and complete classification of all
three-dimensional spherical manifolds, and orders them by decreasing volume, in
the context of multiconnected universe models with positive spatial curvature.
It discusses which spherical topologies are likely to be detectable by
crystallographic methods using three-dimensional catalogs of cosmic objects.
The expected form of the pair separation histogram is predicted (including the
location and height of the spikes) and is compared to computer simulations,
showing that this method is stable with respect to observational uncertainties
and is well suited for detecting spherical topologies.Comment: 32 pages, 26 figure
Alfv\`en wave phase-mixing and damping in the ion cyclotron range of frequencies
Aims. To determine the effect of the Hall term in the generalised Ohm's law
on the damping and phase mixing of Alfven waves in the ion cyclotron range of
frequencies in uniform and non-uniform equilibrium plasmas. Methods. Wave
damping in a uniform plasma is treated analytically, whilst a Lagrangian remap
code (Lare2d) is used to study Hall effects on damping and phase mixing in the
presence of an equilibrium density gradient. Results. The magnetic energy
associated with an initially Gaussian field perturbation in a uniform resistive
plasma is shown to decay algebraically at a rate that is unaffected by the Hall
term to leading order in k^2di^2 where k is wavenumber and di is ion skin
depth. A similar algebraic decay law applies to whistler perturbations in the
limit k^2di^2>>1. In a non-uniform plasma it is found that the
spatially-integrated damping rate due to phase mixing is lower in Hall MHD than
it is in MHD, but the reduction in the damping rate, which can be attributed to
the effects of wave dispersion, tends to zero in both the weak and strong phase
mixing limits
A Tonnetz Model for pentachords
This article deals with the construction of surfaces that are suitable for
representing pentachords or 5-pitch segments that are in the same class.
It is a generalization of the well known \"Ottingen-Riemann torus for triads of
neo-Riemannian theories. Two pentachords are near if they differ by a
particular set of contextual inversions and the whole contextual group of
inversions produces a Tiling (Tessellation) by pentagons on the surfaces. A
description of the surfaces as coverings of a particular Tiling is given in the
twelve-tone enharmonic scale case.Comment: 27 pages, 12 figure
Constraints on the cosmological density parameters and cosmic topology
A nontrivial topology of the spatial section of the universe is an
observable, which can be probed for all locally homogeneous and isotropic
universes, without any assumption on the cosmological density parameters. We
discuss how one can use this observable to set constraints on the density
parameters of the Universe by using a specific spatial topology along with type
Ia supenovae and X-ray gas mass fraction data sets.Comment: 11 pages, 4 figures. To appear in Int. J. Mod. Phys. D (2006).
Invited talk delivered at the 2nd International Workshop on Astronomy and
Relativistic Astrophysic
Quark Soup al dente: Applied Superstring Theory
We discuss the application of the AdS/CFT correspondence to possibly gain new
physical insights for the strongly coupled quark-gluon plasma. This article
provides an informal summary of a talk given by RCM at the 18th International
Conference on General Relativity and Gravitation in July 2007.Comment: This article provides an informal summary of a talk given by RCM at
the 18th International Conference on General Relativity and Gravitation in
July 200
Design and operation of a Rayleigh Ohnesorge Jetting Extensional Rheometer (ROJER) to study extensional properties of low viscosity polymer solutions
The Rayleigh Ohnesorge Jetting Extensional Rheometer (ROJER) enables measurement of very short relaxation times of low viscosity complex fluids such as those encountered in ink-jet printing and spraying applications. This paper focuses on the design and operation of the ROJER. The performance of two nozzle designs are compared using Newtonian fluids alongside a study using computational fluid dynamics (CFD). Subsequently a disposable nozzle is developed that overcomes issues of blockage and cleaning. The operability of this design is subject to a focused study where low viscosity polymer solutions are characterised. The test fluid materials are ethyl hydroxy-ethyl cellulose (EHEC) and poly ethylene oxide (PEO) mixed with water/glycerol solutions. Results obtained by the disposable nozzle are encouraging, paving the way for a more cost-efficient and robust ROJER setup
- …
