5,791 research outputs found
Solar Radiation Pressure Resonances in Low Earth Orbits
The aim of this work is to highlight the crucial role that orbital resonances
associated with solar radiation pressure can have in Low Earth Orbit. We review
the corresponding literature, and provide an analytical tool to estimate the
maximum eccentricity which can be achieved for well-defined initial conditions.
We then compare the results obtained with the simplified model with the results
obtained with a more comprehensive dynamical model. The analysis has important
implications both from a theoretical point of view, because it shows that the
role of some resonances was underestimated in the past, but also from a
practical point of view in the perspective of passive deorbiting solutions for
satellites at the end-of-life
Order statistics and heavy-tail distributions for planetary perturbations on Oort cloud comets
This paper tackles important aspects of comets dynamics from a statistical
point of view. Existing methodology uses numerical integration for computing
planetary perturbations for simulating such dynamics. This operation is highly
computational. It is reasonable to wonder whenever statistical simulation of
the perturbations can be much more easy to handle. The first step for answering
such a question is to provide a statistical study of these perturbations in
order to catch their main features. The statistical tools used are order
statistics and heavy tail distributions. The study carried out indicated a
general pattern exhibited by the perturbations around the orbits of the
important planet. These characteristics were validated through statistical
testing and a theoretical study based on Opik theory.Comment: 9 pages, 12 figures, submitted for publication in Astronomy and
Astrophysic
Importance of Tides for Periastron Precession in Eccentric Neutron Star - White Dwarf Binaries
Although not nearly as numerous as binaries with two white dwarfs, eccentric
neutron star-white dwarf (NS-WD) binaries are important gravitational-wave (GW)
sources for the next generation of space-based detectors sensitive to low
frequency waves. Here we investigate periastron precession in these sources as
a result of general relativistic, tidal, and rotational effects; such
precession is expected to be detectable for at least some of the detected
binaries of this type. Currently, two eccentric NS-WD binaries are known in the
galactic field, PSR J1141-6545 and PSR B2303+46, both of which have orbits too
wide to be relevant in their current state to GW observations. However,
population synthesis studies predict the existence of a significant Galactic
population of such systems. Though small in most of these systems, we find that
tidally induced periastron precession becomes important when tides contribute
to more than 3% of the total precession rate. For these systems, accounting for
tides when analyzing periastron precession rate measurements can improve
estimates of the WD component mass inferred and, in some cases, will prevent us
from misclassifying the object. However, such systems are rare due to rapid
orbital decay. To aid the inclusion of tidal effects when using periastron
precession as a mass measurement tool, we derive a function that relates the WD
radius and periastron precession constant to the WD mass.Comment: Published in The Astrophysical Journa
Design and advancement status of the Beam Expander Testing X-ray facility (BEaTriX)
The BEaTriX (Beam Expander Testing X-ray facility) project is an X-ray
apparatus under construction at INAF/OAB to generate a broad (200 x 60 mm2),
uniform and low-divergent X-ray beam within a small lab (6 x 15 m2). BEaTriX
will consist of an X-ray source in the focus a grazing incidence paraboloidal
mirror to obtain a parallel beam, followed by a crystal monochromation system
and by an asymmetrically-cut diffracting crystal to perform the beam expansion
to the desired size. Once completed, BEaTriX will be used to directly perform
the quality control of focusing modules of large X-ray optics such as those for
the ATHENA X-ray observatory, based on either Silicon Pore Optics (baseline) or
Slumped Glass Optics (alternative), and will thereby enable a direct quality
control of angular resolution and effective area on a number of mirror modules
in a short time, in full X-ray illumination and without being affected by the
finite distance of the X-ray source. However, since the individual mirror
modules for ATHENA will have an optical quality of 3-4 arcsec HEW or better,
BEaTriX is required to produce a broad beam with divergence below 1-2 arcsec,
and sufficient flux to quickly characterize the PSF of the module without being
significantly affected by statistical uncertainties. Therefore, the optical
components of BEaTriX have to be selected and/or manufactured with excellent
optical properties in order to guarantee the final performance of the system.
In this paper we report the final design of the facility and a detailed
performance simulation.Comment: Accepted paper, pre-print version. The finally published manuscript
can be downloaded from http://dx.doi.org/10.1117/12.223895
Stream Lifetimes Against Planetary Encounters
We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test
Simbol-X Hard X-ray Focusing Mirrors: Results Obtained During the Phase A Study
Simbol-X will push grazing incidence imaging up to 80 keV, providing a strong
improvement both in sensitivity and angular resolution compared to all
instruments that have operated so far above 10 keV. The superb hard X-ray
imaging capability will be guaranteed by a mirror module of 100 electroformed
Nickel shells with a multilayer reflecting coating. Here we will describe the
technogical development and solutions adopted for the fabrication of the mirror
module, that must guarantee an Half Energy Width (HEW) better than 20 arcsec
from 0.5 up to 30 keV and a goal of 40 arcsec at 60 keV. During the phase A,
terminated at the end of 2008, we have developed three engineering models with
two, two and three shells, respectively. The most critical aspects in the
development of the Simbol-X mirrors are i) the production of the 100 mandrels
with very good surface quality within the timeline of the mission; ii) the
replication of shells that must be very thin (a factor of 2 thinner than those
of XMM-Newton) and still have very good image quality up to 80 keV; iii) the
development of an integration process that allows us to integrate these very
thin mirrors maintaining their intrinsic good image quality. The Phase A study
has shown that we can fabricate the mandrels with the needed quality and that
we have developed a valid integration process. The shells that we have produced
so far have a quite good image quality, e.g. HEW <~30 arcsec at 30 keV, and
effective area. However, we still need to make some improvements to reach the
requirements. We will briefly present these results and discuss the possible
improvements that we will investigate during phase B.Comment: 6 pages, 3 figures, invited talk at the conference "2nd International
Simbol-X Symposium", Paris, 2-5 december, 200
The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities
We study the long term evolution of the distance between two Keplerian
confocal trajectories in the framework of the averaged restricted 3-body
problem. The bodies may represent the Sun, a solar system planet and an
asteroid. The secular evolution of the orbital elements of the asteroid is
computed by averaging the equations of motion over the mean anomalies of the
asteroid and the planet. When an orbit crossing with the planet occurs the
averaged equations become singular. However, it is possible to define piecewise
differentiable solutions by extending the averaged vector field beyond the
singularity from both sides of the orbit crossing set. In this paper we improve
the previous results, concerning in particular the singularity extraction
technique, and show that the extended vector fields are Lipschitz-continuous.
Moreover, we consider the distance between the Keplerian trajectories of the
small body and of the planet. Apart from exceptional cases, we can select a
sign for this distance so that it becomes an analytic map of the orbital
elements near to crossing configurations. We prove that the evolution of the
'signed' distance along the averaged vector field is more regular than that of
the elements in a neighborhood of crossing times. A comparison between averaged
and non-averaged evolutions and an application of these results are shown using
orbits of near-Earth asteroids.Comment: 29 pages, 8 figure
Emerging properties of financial time series in the “Game of Life”
We explore the spatial complexity of Conway’s “Game of Life,” a prototypical cellular automaton by means of a geometrical procedure generating a two-dimensional random walk from a bidimensional lattice with periodical boundaries. The one-dimensional projection of this process is analyzed and it turns out that some of its statistical properties resemble the so-called stylized facts observed in financial time series. The scope and meaning of this result are discussed from the viewpoint of complex systems. In particular, we stress how the supposed peculiarities of financial time series are, often, overrated in their importance
Accretion of Planetary Material onto Host Stars
Accretion of planetary material onto host stars may occur throughout a star's
life. Especially prone to accretion, extrasolar planets in short-period orbits,
while relatively rare, constitute a significant fraction of the known
population, and these planets are subject to dynamical and atmospheric
influences that can drive significant mass loss. Theoretical models frame
expectations regarding the rates and extent of this planetary accretion. For
instance, tidal interactions between planets and stars may drive complete
orbital decay during the main sequence. Many planets that survive their stars'
main sequence lifetime will still be engulfed when the host stars become red
giant stars. There is some observational evidence supporting these predictions,
such as a dearth of close-in planets around fast stellar rotators, which is
consistent with tidal spin-up and planet accretion. There remains no clear
chemical evidence for pollution of the atmospheres of main sequence or red
giant stars by planetary materials, but a wealth of evidence points to active
accretion by white dwarfs. In this article, we review the current understanding
of accretion of planetary material, from the pre- to the post-main sequence and
beyond. The review begins with the astrophysical framework for that process and
then considers accretion during various phases of a host star's life, during
which the details of accretion vary, and the observational evidence for
accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie
- …
