44,230 research outputs found
On electrons and hydrogen-bond connectivity in liquid water
The network connectivity in liquid water is revised in terms of electronic
signatures of hydrogen bonds (HBs) instead of geometric criteria, in view of
recent X-ray absorption studies. The analysis is based on ab initio
molecular-dynamics simulations at ambient conditions. Even if instantaneous
thread-like structures are observed in the electronic network, they
continuously reshape in oscillations reminiscent of the r and t modes in ice
(tau~170 fs). However, two water molecules initially joint by a HB remain
effectively bound over many periods regardless of its electronic signature.Comment: 4 pages, 4 figure
Some Physical Consequences of Abrupt Changes in the Multipole Moments of a Gravitating Body
The Barrab\`es-Israel theory of light-like shells in General Relativity is
used to show explicitly that in general a light-like shell is accompanied by an
impulsive gravitational wave. The gravitational wave is identified by its
Petrov Type N contribution to a Dirac delta-function term in the Weyl conformal
curvature tensor (with the delta-function singular on the null hypersurface
history of the wave and shell). An example is described in which an
asymptotically flat static vacuum Weyl space-time experiences a sudden change
across a null hypersurface in the multipole moments of its isolated axially
symmetric source. A light-like shell and an impulsive gravitational wave are
identified, both having the null hypersurface as history. The stress-energy in
the shell is dominated (at large distance from the source) by the jump in the
monopole moment (the mass) of the source with the jump in the quadrupole moment
mainly responsible for the stress being anisotropic. The gravitational wave
owes its existence principally to the jump in the quadrupole moment of the
source confirming what would be expected.Comment: 26 pages, tex, no figures, to appear in Phys.Rev.
Critical current of a Josephson junction containing a conical magnet
We calculate the critical current of a
superconductor/ferromagnetic/superconductor (S/FM/S) Josephson junction in
which the FM layer has a conical magnetic structure composed of an in-plane
rotating antiferromagnetic phase and an out-of-plane ferromagnetic component.
In view of the realistic electronic properties and magnetic structures that can
be formed when conical magnets such as Ho are grown with a polycrystalline
structure in thin-film form by methods such as direct current sputtering and
evaporation, we have modeled this situation in the dirty limit with a large
magnetic coherence length (). This means that the electron mean free
path is much smaller than the normalized spiral length which in
turn is much smaller than (with as the length a complete
spiral makes along the growth direction of the FM). In this physically
reasonable limit we have employed the linearized Usadel equations: we find that
the triplet correlations are short ranged and manifested in the critical
current as a rapid oscillation on the scale of . These rapid
oscillations in the critical current are superimposed on a slower oscillation
which is related to the singlet correlations. Both oscillations decay on the
scale of . We derive an analytical solution and also describe a
computational method for obtaining the critical current as a function of the
conical magnetic layer thickness.Comment: Extended version of the published paper. Additional information about
the computational method is included in the appendi
Magnetic-coupling-dependent spin-triplet supercurrents in helimagnet/ferromagnet Josephson junctions
The experimental achievements during the past year in demonstrating the
existence of long-ranged spin-triplet supercurrents in ferromagnets proximity
coupled to singlet superconductors open up the possibility for new interesting
physics and applications [for a review, see M. Eschrig, Phys. Today 64(1), 43
(2011)]. Our group reported the injection of triplet supercurrents into a
magnetically uniform ferromagnet (Co) by sandwiching it between two
helimagnet/superconductor (Ho/Nb) bilayers to form a Nb/Ho/Co/Ho/Nb-type
Josephson device. In the function of the Ho layer thicknesses, the supercurrent
was found to modulate in a complex way that seemed to depend on the magnetic
structure of Ho. To understand this unusual behavior, we have theoretically
studied the properties of an ideal Josephson device with a
helimagnet/ferromagnet/helimagnet (HM/F/HM) barrier in the clean limit using
the Eilenberger equation; we show, in particular, that the maximum triplet
supercurrent that can pass across the barrier will depend non-monotonically on
the thicknesses of the HM layers if the HM and F layers are magnetically
exchange coupled at their interface.Comment: 5 pages, 3 figure
Development and application of the GIM code for the Cyber 203 computer
The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented
Diode laser 87Rb optical pumping in an evacuated wall-coated cell
The evacuated wall coated sealed cell coupled with diode laser optical pumping offers a number of attractive potential advantages for use in Rb or Cs atomic frequency standards. An investigation of systematic effects is required to explore possible limitations of the technique. The use of diode laser optical pumping of 87 Rb in an evacuated wall coated sealed cell is presented. Experimental results/discussion to be presented include the signal strength and line broadening of the 0 - 0 hyperfine resonance as a function of light intensity for the D1 optical transitions (F - F prime) - (2 1 prime) and (2 - 2 prime), shift of the 0 - 0 hyperfine frequency as a function of laser intensity and de-tuning from optical resonance, and diode laser frequency stabilization techniques
High Accuracy Near-infrared Imaging Polarimetry with NICMOS
The findings of a nine orbit calibration plan carried out during HST Cycle
15, to fully determine the NICMOS camera 2 (2.0 micron) polarization
calibration to high accuracy, are reported. Recently Ueta et al. and Batcheldor
et al. have suggested that NICMOS possesses a residual instrumental
polarization at a level of 1.2-1.5%. This would completely inhibit the data
reduction in a number of GO programs, and hamper the ability of the instrument
to perform high accuracy polarimetry. We obtained polarimetric calibration
observations of three polarimetric standards at three spacecraft roll angles
separated by ~60deg. Combined with archival data, these observations were used
to characterize the residual instrumental polarization in order for NICMOS to
reach its full potential of accurate imaging polarimetry at p~1%. Using these
data, we place an 0.6% upper limit on the instrumental polarization and
calculate values of the parallel transmission coefficients that reproduce the
ground-based results for the polarimetric standards. The uncertainties
associated with the parallel transmission coefficients, a result of the
photometric repeatability of the observations, are seen to dominate the
accuracy of p and theta. However, the updated coefficients do allow imaging
polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15deg. This
work enables a new caliber of science with HST.Comment: 13 pages, 9 figures, PASP accepte
The star-formation history of the universe - an infrared perspective
A simple and versatile parameterized approach to the star formation history
allows a quantitative investigation of the constraints from far infrared and
submillimetre counts and background intensity measurements.
The models include four spectral components: infrared cirrus (emission from
interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN
dust torus. The 60 m luminosity function is determined for each chosen
rate of evolution using the PSCz redshift data for 15000 galaxies. The
proportions of each spectral type as a function of 60 m luminosity are
chosen for consistency with IRAS and SCUBA colour-luminosity relations, and
with the fraction of AGN as a function of luminosity found in 12 m
samples. The luminosity function for each component at any wavelength can then
be calculated from the assumed spectral energy distributions. With assumptions
about the optical seds corresponding to each component and, for the AGN
component, the optical and near infrared counts can be accurately modelled.
A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850
m can be found with pure luminosity evolution in all 3 cosmological models
investigated: = 1, = 0.3 ( = 0), and
= 0.3, = 0.7.
All 3 models also give an acceptable fit to the integrated background
spectrum. Selected predictions of the models, for example redshift
distributions for each component at selected wavelengths and fluxes, are shown.
The total mass-density of stars generated is consistent with that observed,
in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details
of models can be found at http://astro.ic.ac.uk/~mrr/countmodel
- …
