850 research outputs found
Carrier dynamics and coherent acoustic phonons in nitride heterostructures
We model generation and propagation of coherent acoustic phonons in
piezoelectric InGaN/GaN multi-quantum wells embedded in a \textit{pin} diode
structure and compute the time resolved reflectivity signal in simulated
pump-probe experiments. Carriers are created in the InGaN wells by ultrafast
pumping below the GaN band gap and the dynamics of the photoexcited carriers is
treated in a Boltzmann equation framework. Coherent acoustic phonons are
generated in the quantum well via both deformation potential electron-phonon
and piezoelectric electron-phonon interaction with photogenerated carriers,
with the latter mechanism being the dominant one. Coherent longitudinal
acoustic phonons propagate into the structure at the sound speed modifying the
optical properties and giving rise to a giant oscillatory differential
reflectivity signal. We demonstrate that coherent optical control of the
differential reflectivity can be achieved using a delayed control pulse.Comment: 14 pages, 11 figure
Topological defects in flat nanomagnets: the magnetostatic limit
We discuss elementary topological defects in soft magnetic nanoparticles in
the thin-film geometry. In the limit dominated by magnetostatic forces the
low-energy defects are vortices (winding number n = +1), cross ties (n = -1),
and edge defects with n = -1/2. We obtain topological constraints on the
possible composition of domain walls. The simplest domain wall in this regime
is composed of two -1/2 edge defects and a vortex, in accordance with
observations and numerics.Comment: 3 pages, eps figures. Proceedings of MMM 0
Classical Topological Order in Kagome Ice
We examine the onset of classical topological order in a nearest-neighbor
kagome ice model. Using Monte Carlo simulations, we characterize the
topological sectors of the groundstate using a non-local cut measure which
circumscribes the toroidal geometry of the simulation cell. We demonstrate that
simulations which employ global loop updates that are allowed to wind around
the periodic boundaries cause the topological sector to fluctuate, while
restricted local loop updates freeze the simulation into one topological
sector. The freezing into one topological sector can also be observed in the
susceptibility of the real magnetic spin vectors projected onto the kagome
plane. The ability of the susceptibility to distinguish between fluctuating and
non-fluctuating topological sectors should motivate its use as a local probe of
topological order in a variety of related model and experimental systems.Comment: 17 pages, 9 figure
Propagating Coherent Acoustic Phonon Wavepackets in InMnAs/GaSb
We observe pronounced oscillations in the differential reflectivity of a
ferromagnetic InMnAs/GaSb heterostructure using two-color pump-probe
spectroscopy. Although originally thought to be associated with the
ferromagnetism, our studies show that the oscillations instead result from
changes in the position and frequency-dependent dielectric function due to the
generation of coherent acoustic phonons in the ferromagnetic InMnAs layer and
their subsequent propagation into the GaSb. Our theory accurately predicts the
experimentally measured oscillation period and decay time as a function of
probe wavelength.Comment: 4 pages, 4 figure
Euler numbers of four-dimensional rotating black holes with the Euclidean signature
For a black hole's spacetime manifold in the Euclidean signature, its metric
is positive definite and therefore a Riemannian manifold. It can be regarded as
a gravitational instanton and a topological characteristic which is the Euler
number is associated. In this paper we derive a formula for the Euler numbers
of four-dimensional rotating black holes by the integral of the Euler density
on the spacetime manifolds of black holes. Using this formula, we obtain that
the Euler numbers of Kerr and Kerr-Newman black holes are 2. We also obtain
that the Euler number of the Kerr-Sen metric in the heterotic string theory
with one boost angle nonzero is 2 that is in accordence with its topology.Comment: 15 pages, Latex, arxiv-id for the refs. supplemente
Self-gravitating branes of codimension 4 in Lovelock gravity
We construct a familly of exact solutions of Lovelock equations describing
codimension four branes with discrete symmetry in the transverse space. Unlike
what is known from pure Einstein gravity, where such brane solutions of higher
codimension are singular, the solutions we find, for the complete Lovelock
theory, only present removable singularities. The latter account for a
localised tension-like energy-momentum tensor on the brane, in analogy with the
case of a codimension two self-gravitating cosmic string in pure Einstein
gravity. However, the solutions we discuss present two main distinctive
features : the tension of the brane receives corrections from the induced
curvature of the brane's worldsheet and, in a given Lovelock theory, the
spectrum of possible values of the tension is discrete. These solutions provide
a new framework for the study of higher codimension braneworlds.Comment: 22 page
A cascade of magnetic field induced spin transitions in LaCoO3
We present magnetization and magnetostriction studies of the insulating
perovskite LaCoO3 in magnetic fields approaching 100 T. In marked contrast with
expectations from single-ion models, the data reveal two distinct first-order
spin transitions and well-defined magnetization plateaux. The magnetization at
the higher plateau is only about half the saturation value expected for spin-1
Co3+ ions. These findings strongly suggest collective behavior induced by
strong interactions between different electronic -- and therefore spin --
configurations of Co3+ ions. We propose a model of these interactions that
predicts crystalline spin textures and a cascade of four magnetic phase
transitions at high fields, of which the first two account for the experimental
data.Comment: 5 pages + supplementary materials, 5 figure
- …
