2,181 research outputs found
Vector Manifestation and Fate of Vector Mesons in Dense Matter
We describe in-medium properties of hadrons in dense matter near chiral
restoration using a Wilsonian matching to QCD of an effective field theory with
hidden local symmetry at the chiral cutoff . We find that chiral
symmetry is restored in vector manifestation \`a la Harada and Yamawaki at a
critical matter density . We express the critical density in terms of QCD
correlators in dense matter at the matching scale. In a manner completely
analogous to what happens at the critical and at the critical
temperature , the vector meson mass is found to vanish (in the chiral
limit) at chiral restoration. This result provides a support for Brown-Rho
scaling predicted a decade ago.Comment: 14 pages, 2 figure
Antiflow of kaons in relativistic heavy ion collisions
We compare relativistic transport model calculations to recent data on the
sideward flow of neutral strange K^0_s mesons for Au+Au collisions at 6 AGeV. A
soft nuclear equation of state is found to describe very well the positive
proton flow data measured in the same experiment. In the absence of kaon
potential, the K^0 flow pattern is similar to that of protons. The kaon flow
becomes negative if a repulsive kaon potential determined from the impulse
approximation is introduced. However, this potential underestimates the data
which exhibits larger antiflow. An excellent agreement with the data is
obtained when a relativistic scalar-vector kaon potential, that has stronger
density dependence, is used. We further find that the transverse momentum
dependence of directed and elliptic flow is quite sensitive to the kaon
potential in dense matter.Comment: 5 pages, Revtex, 4 figure
Spectroscopy of resonance decays in high-energy heavy-ion collisions
Invariant mass distributions of the hadronic decay products from resonances
formed in relativistic heavy ion collision (RHIC) experiments are investigated
with a view to disentangle the effects of thermal motion and the phase space of
decay products from those of intrinsic changes in the structure of resonances
at the freeze-out conditions. Analytic results of peak mass shifts for the
cases of both equal and unequal mass decay products are derived. The shift is
expressed in terms of the peak mass and width of the vacuum or medium-modified
spectral functions and temperature. Examples of expected shifts in meson (e.g.,
rho, omega, and sigma) and baryon (e.g., Delta) resonances that are helpful to
interpret recent RHIC measurements at BNL are provided. Although significant
downward mass shifts are caused by widened widths of the meson in
medium, a downward shift of at least 50 MeV in its intrinsic mass is required
to account for the reported downward shift of 60-70 MeV in the peak of the
rho-invariant mass distribution. An observed downward shift from the vacuum
peak value of the Delta distinctively signals a significant downward shift in
its intrinsic peak mass, since unlike for the rho-meson, phase space functions
produce an upward shift for the Delta isobar.Comment: published version with slight change of title and some typos
corrected, 12 pages, 5 figure
Model for the Quasifree Polarization-Transfer Measurements in the (p,n) reaction at 495 MeV
The recent (p,n) polarization transfer experiments at LAMPF are explained in
terms of a dropping rho-meson mass in the medium.Comment: 12 pages of text (LATEX), 4 figures (not included, available from the
authors). February 199
Nucleon Resonance Transition Couplings to Vector Mesons
Recent heavy ion experiments indicate modifications of the meson mass
in medium. In the CERES experiments mesons are produced at normal
nuclear matter density, where hadrons are more appropriate constituents than
quarks. A collective "nuclear ", in which every nucleon is excited to the
N(1520) state, with equal amplitude, enters in this description. At the higher
densities reached by future experiments constituent quarks become the
appropriate variables. Here the and transition couplings to the
nucleon resonances up to 1700 MeV, including the N(1520), are derived by means
of the chiral quark model. The relevant coupling constants are expressed in
terms of the corresponding vector coupling constants to nucleons. The quality
of the model relations is tested by a calculation of the corresponding
pion-resonance coupling constants, which are known from the empirical pion
decay widths.Comment: 30 pages, Late
Speeding up Cylindrical Algebraic Decomposition by Gr\"obner Bases
Gr\"obner Bases and Cylindrical Algebraic Decomposition are generally thought
of as two, rather different, methods of looking at systems of equations and, in
the case of Cylindrical Algebraic Decomposition, inequalities. However, even
for a mixed system of equalities and inequalities, it is possible to apply
Gr\"obner bases to the (conjoined) equalities before invoking CAD. We see that
this is, quite often but not always, a beneficial preconditioning of the CAD
problem.
It is also possible to precondition the (conjoined) inequalities with respect
to the equalities, and this can also be useful in many cases.Comment: To appear in Proc. CICM 2012, LNCS 736
What does the rho-meson do? In-medium mass shift scenarios versus hadronic model calculations
The NA60 experiment has studied low-mass muon pair production in In-In
collisions at with unprecedented precision. With these results
there is hope that the in-medium modifications of the vector meson spectral
function can be constrained more thoroughly than before. We investigate in
particular what can be learned about collisional broadening by a hot and dense
medium and what constrains the experimental results put on in-medium mass shift
scenarios. The data show a clear indication of considerable in-medium
broadening effects but disfavor mass shift scenarios where the -meson
mass scales with the square root of the chiral condensate. Scaling scenarios
which predict at finite density a dropping of the -meson mass that is
stronger than that of the quark condensate are clearly ruled out since they are
also accompanied by a sharpening of the spectral function.Comment: Proceeding contribution, Talk given by J. Ruppert at Workshop for
Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus
Collisions (Hot Quarks 2006), Villasimius, Sardinia, Italy, 15-20 May 2006.
To appear in EPJ
Renormalization Group Analysis of \rho-Meson Properties at Finite Density
We calculate the density dependence of the -meson mass and coupling
constant() for -nucleon-nucleon vertex at one loop using the
lagrangian where the -meson is included as a dynamical gauge boson of a
hidden local symmetry. From the condition that thermodynamic potential should
not depend on the arbitrary energy scale, renormalization scale, one can
construct a renormalization group equation for the thermodynamic potential and
argue that the various renormalization group coefficients are functions of the
density or temperature. We calculate the -function for
-nucleon-nucleon coupling constant () and -function
for -meson mass (). We found that the -meson mass
and the coupling constant for drop as density increases in the
low energy limit.Comment: 24 pages, 10 figures, revised versio
Enhancement of low-mass dileptons in heavy-ion collisions
Using a relativistic transport model for the expansion stage of S+Au
collisions at 200 GeV/nucleon, we show that the recently observed enhancement
of low-mass dileptons by the CERES collaboration can be explained by the
decrease of vector meson masses in hot and dense hadronic matter.Comment: 12 pages, RevTeX, 3 figures available from [email protected]
Matter-induced modification of resonances at RHIC freezeout
We discuss the physical effects causing a modification of resonance masses,
widths and even shapes in a dilute hadronic gas at late stages of heavy ion
collisions. We quantify the conditions at which resonances are produced at
RHIC, and found that it happens at . Although in the pp case
the ``kinematic'' effects like thermal weighting of the states is sufficient,
in AA we see a clear effect of dynamical interaction with matter, both due to a
variety of s-channel resonances and due to t-channel scalar exchanges. The
particular quantity we focus mostly on is the meson mass, for which
these dynamical effects lead to about -50 MeV shift, on top of about -20 MeV of
a thermal effect: both agree well with preliminary data from STAR experiment at
RHIC. We also predict a complete change of shape of resonance, even
by thermal effects alone.Comment: A comment about width modification added, some misspelling correcte
- …
