2 research outputs found
Molecular Characteristics of a Protease-Resistant, Amyloidogenic and Neurotoxic Peptide Homologous to Residues 106-126 of the Prion Protein
In the prion-related encephalopathies the prion protein is converted to an altered form, known as PrP(Sc), that is partially resistant to protease digestion. This abnormal isoform accumulates in the brain and its protease-resistant core aggregates extracellularly into amyloid fibrils. We have investigated the conformational properties, aggregation behaviour and sensitivity to protease digestion of a synthetic peptide homologous to residues 106-126 of human PrP, which was previously found to form amyloid-like fibrils in vitro and displayed neurotoxic activity toward primary cultures of rat hippocampal neurons. A scrambled sequence of peptide PrP 106-126 was used as a control. By circular dichroism, PrP 106-126 exhibited a secondary structure composed largely of \u3b2-sheet, whereas the scrambled sequence of PrP 106-126 showed a random coil structure. The \u3b2-sheet content of PrP 106-126 was much higher in 200 mM phosphate buffer at pH 5.0 than in the same buffer at pH 7.0. Laser light scatteering analysis showed that PrP 106-126 aggregated immediately after dissolution in 20 mM or 200 mM phosphate buffer, pH 5.0 and 7.0, whereas scrambled PrP 106-126 did not. PrP 106-126 aggregates had an average hydrodinamic diameter of 100 nm and an average molecular weight of 12 x 106 \ub1 30% Daltons, corresponding to the aggregation of 6000 \ub1 30% molecules. Peptide PrP 106-126 showed partial resistance to digestion with Proteinase K and Pronase, whereas scrambled PrP 106-126 was completely degraded by incubation with the enzymes at 37\ub0C for 30 minutes
Disease Tracking Markers for Alzheimer's Disease at the Prodromal (MCI) Stage
Older persons with Mild Cognitive Impairment (MCI) feature neurobiological Alzheimer's Disease (AD) in 50\% to 70\% of the cases and develop dementia within the next 5 to 7 years. Current evidence suggests that biochemical, neuroimaging, electrophysiological, and neuropsychological markers can track the disease over time since the MCI stage (also called prodromal AD). The amount of evidence supporting their validity is of variable strength. We have reviewed the current literature and categorized evidence of validity into three classes: Class A, availability of multiple serial studies; Class B a single serial study or multiple cross sectional studies of patients with increasing disease severity from MCI to probable AD; and class C, multiple cross sectional studies of patients in the dementia stage, not including the MCI stage. Several Class A studies suggest that episodic memory and semantic fluency are the most reliable neuropsychological markers of progression. Hippocampal atrophy, ventricular volume and whole brain atrophy are structural MRI markers with class A evidence. Resting-state fMRI and connectivity, and diffusion MR markers in the medial temporal white matter (parahippocampus and posterior cingulum) and hippocampus are promising but require further validation. Change in amyloid load in MCI patients warrant further investigations, e.g. over longer period of time, to assess its value as marker of disease progression. Several spectral markers of resting state EEG rhythms that might reflect neurodegenerative processes in the prodromal stage of AD (EEG power density, functional coupling, spectral coherence, and synchronization) suffer from lack of appropriately designed studies. Although serial studies on late event-related potentials (ERPs) in healthy elders or MCI patients are inconclusive, others tracking disease progression and effects of cholinesterase inhibiting drugs in AD, and cross-sectional including MCI or predicting development of AD offer preliminary evidence of validity as a marker of disease progression from the MCI stage. CSF Markers, such as Aβ 1-42, t-tau and p-tau are valuable markers which support the clinical diagnosis of Alzheimer's disease. However, these markers are not sensitive to disease progression and cannot be used to monitor the severity of Alzheimer's disease. For Isoprostane F2 some evidence exists that its increase correlates with the progression and the severity of AD
