3,544 research outputs found
Image Reconstruction with a LaBr3-based Rotational Modulator
A rotational modulator (RM) gamma-ray imager is capable of obtaining
significantly better angular resolution than the fundamental geometric
resolution defined by the ratio of detector diameter to mask-detector
separation. An RM imager consisting of a single grid of absorbing slats
rotating ahead of an array of a small number of position-insensitive detectors
has the advantage of fewer detector elements (i.e., detector plane pixels) than
required by a coded aperture imaging system with comparable angular resolution.
The RM therefore offers the possibility of a major reduction in instrument
complexity, cost, and power. A novel image reconstruction technique makes it
possible to deconvolve the raw images, remove sidelobes, reduce the effects of
noise, and provide resolving power a factor of 6 - 8 times better than the
geometric resolution. A 19-channel prototype RM developed in our laboratory at
Louisiana State University features 13.8 deg full-angle field of view, 1.9 deg
geometric angular resolution, and the capability of resolving sources to within
35' separation. We describe the technique, demonstrate the measured performance
of the prototype instrument, and describe the prospects for applying the
technique to either a high-sensitivity standoff gamma-ray imaging detector or a
satellite- or balloon-borne gamma-ray astronomy telescope.Comment: submitted to Nuclear Instrument & Methods, special edition: SORMA
2010 on June 16, 201
Recrystallization textures and microstructures of Al-0.3%Cu alloy after deformation to high strains
Budget-restricted utility games with ordered strategic decisions
We introduce the concept of budget games. Players choose a set of tasks and
each task has a certain demand on every resource in the game. Each resource has
a budget. If the budget is not enough to satisfy the sum of all demands, it has
to be shared between the tasks. We study strategic budget games, where the
budget is shared proportionally. We also consider a variant in which the order
of the strategic decisions influences the distribution of the budgets. The
complexity of the optimal solution as well as existence, complexity and quality
of equilibria are analyzed. Finally, we show that the time an ordered budget
game needs to convergence towards an equilibrium may be exponential
Does femtosecond time-resolved second-harmonic generation probe electron temperatures at surfaces?
Femtosecond pump-probe second-harmonic generation (SHG) and transient linear
reflectivity measurements were carried out on polycrystalline Cu, Ag and Au in
air to analyze whether the electron temperature affects Fresnel factors or
nonlinear susceptibilities, or both. Sensitivity to electron temperatures was
attained by using photon energies near the interband transition threshold. We
find that the nonlinear susceptibility carries the electron temperature
dependence in case of Ag and Au, while for Cu the dependence is in the Fresnel
factors. This contrasting behavior emphasizes that SHG is not a priori
sensitive to electron dynamics at surfaces or interfaces, notwithstanding its
cause.Comment: 11 pages, 4 figure
Longitudinal broadening of near side jets due to parton cascade
Longitudinal broadening along direction on near side in
two-dimensional () di-hadron correlation
distribution has been studied for central Au+Au collisions at =
200 GeV, within a dynamical multi-phase transport model. It was found that the
longitudinal broadening is generated by a longitudinal flow induced by strong
parton cascade in central Au+Au collisions, in comparison with p+p collisions
at = 200 GeV. The longitudinal broadening may shed light on the
information about strongly interacting partonic matter at RHIC.Comment: 5 pages, 4 figures; accepted by Eur. Phys. J.
Stability of 1+1 dimensional causal relativistic viscous hydrodynamics
The stability of the 1+1 dimensional solution of Israel-Stewart theory is
investigated. Firstly, the evolution of the temperature and the ratio of the
bulk pressure over the equilibrium pressure of the background is explored. Then
the stability with linear perturbations is studied by using the Lyapunov direct
method. It shows that the shear viscosity may weaken the instability induced by
the large peak of bulk viscosity around the phase transition temperature .Comment: 18 pages, 4 figures, 1 table; to be published in Nuclear Physics
One-dimensional semiconductor in a polar solvent: Solvation and low-frequency dynamics of an excess charge carrier
Due to solvation, excess charge carriers on 1d semiconductor nanostructures
immersed in polar solvents undergo self-localization into polaronic states.
Using a simplified theoretical model for small-diameter structures, we study
low-frequency properties of resulting 1d adiabatic polarons. The combined
microscopic dynamics of the electronic charge density and the solvent leads to
macroscopic Langevin dynamics of a polaron and to the appearance of local
dielectric relaxation modes. Polaron mobility is evaluated as a function of
system parameters. Numerical estimates indicate that the solvated carriers can
have mobilities orders of magnitude lower than the intrinsic values.Comment: Typo in Eq.(12) has been correcte
Oxide formation at the surface of late 4d transition metals: Insights from first-principles atomistic thermodynamics
Using density-functional theory we assess the stability of bulk and surface
oxides of the late 4d transition metals in a ``constrained equilibrium'' with a
gas phase formed of O2 and CO. While the stability range of the most stable
bulk oxide extends for ruthenium well into gas phase conditions representative
of technological CO oxidation catalysis, this is progressively less so for the
4d metals to its right in the periodic system. Surface oxides could
nevertheless still be stable under such conditions. These thermodynamic
considerations are discussed in the light of recent experiments, emphasizing
the role of (surface) oxides as the active phase of model catalysts formed from
these metals.Comment: 7 pages including 3 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Three-generation flavor transitions and decays of supernova relic neutrinos
If neutrinos have mass, they can also decay. Decay lifetimes of cosmological
interest can be probed, in principle, through the detection of the redshifted,
diffuse neutrino flux produced by all past supernovae--the so-called supernova
relic neutrino (SRN) flux. In this work, we solve the SRN kinetic equations in
the general case of three-generation flavor transitions followed by invisible
(nonradiative) two-body decays. We then use the general solution to calculate
observable SRN spectra in some representative decay scenarios. It is shown
that, in the presence of decay, the SRN event rate can basically span the whole
range below the current experimental upper bound--a range accessible to future
experimental projects. Radiative SRN decays are also briefly discussed.Comment: 25 pages, including 7 figure
- …
