241 research outputs found
Single-particle model for a granular ratchet
A simple model for a granular ratchet corresponding to a single grain
bouncing off a vertically vibrating sawtooth-like base is studied. Depending on
the vibration strength, the sawtooth roughness and the restitution coefficient,
horizontal transport in both the preferred and unfavoured directions is
observed. A phase diagram indicating the regions in parameter space where each
of the three possible regimes (no current, normal current, and current
reversal) occurs is presented.Comment: 7 pages, 3 figures, submitted to Physica
Scaling relations for diversity of languages
The distribution of living languages is investigated and scaling relations
are found for the diversity of languages as a function of the country area and
population. These results are compared with data from Ecology and from computer
simulations of fragmentation dynamics where similar scalings appear. The
language size distribution is also studied and shown to display two scaling
regions: (i) one for the largest (in population) languages and (ii) another one
for intermediate-size languages. It is then argued that these two classes of
languages may have distinct growth dynamics, being distributed on the sets of
different fractal dimensions.Comment: 10 pages, 4 figure
Dynamical Systems approach to Saffman-Taylor fingering. A Dynamical Solvability Scenario
A dynamical systems approach to competition of Saffman-Taylor fingers in a
channel is developed. This is based on the global study of the phase space
structure of the low-dimensional ODE's defined by the classes of exact
solutions of the problem without surface tension. Some simple examples are
studied in detail, and general proofs concerning properties of fixed points and
existence of finite-time singularities for broad classes of solutions are
given. The existence of a continuum of multifinger fixed points and its
dynamical implications are discussed. The main conclusion is that exact
zero-surface tension solutions taken in a global sense as families of
trajectories in phase space spanning a sufficiently large set of initial
conditions, are unphysical because the multifinger fixed points are
nonhyperbolic, and an unfolding of them does not exist within the same class of
solutions. Hyperbolicity (saddle-point structure) of the multifinger fixed
points is argued to be essential to the physically correct qualitative
description of finger competition. The restoring of hyperbolicity by surface
tension is discussed as the key point for a generic Dynamical Solvability
Scenario which is proposed for a general context of interfacial pattern
selection.Comment: 3 figures added, major rewriting of some sections, submitted to Phys.
Rev.
Avalanches in the Weakly Driven Frenkel-Kontorova Model
A damped chain of particles with harmonic nearest-neighbor interactions in a
spatially periodic, piecewise harmonic potential (Frenkel-Kontorova model) is
studied numerically. One end of the chain is pulled slowly which acts as a weak
driving mechanism. The numerical study was performed in the limit of infinitely
weak driving. The model exhibits avalanches starting at the pulled end of the
chain. The dynamics of the avalanches and their size and strength distributions
are studied in detail. The behavior depends on the value of the damping
constant. For moderate values a erratic sequence of avalanches of all sizes
occurs. The avalanche distributions are power-laws which is a key feature of
self-organized criticality (SOC). It will be shown that the system selects a
state where perturbations are just able to propagate through the whole system.
For strong damping a regular behavior occurs where a sequence of states
reappears periodically but shifted by an integer multiple of the period of the
external potential. There is a broad transition regime between regular and
irregular behavior, which is characterized by multistability between regular
and irregular behavior. The avalanches are build up by sound waves and shock
waves. Shock waves can turn their direction of propagation, or they can split
into two pulses propagating in opposite directions leading to transient
spatio-temporal chaos. PACS numbers: 05.70.Ln,05.50.+q,46.10.+zComment: 33 pages (RevTex), 15 Figures (available on request), appears in
Phys. Rev.
Manejo do dossel vegetativo e seu efeito nos componentes de produção da videira Merlot.
A poda verde é uma prática cultural utilizada para melhorar as condições do dossel vegetativo dos vinhedos, visando a favorecer a qualidade da uva e do vinho. Nesse sentido, realizou-se este experimento entre as safras de 1993/1994 e 1996/1997, com diferentes modalidades de poda verde, num vinhedo do cv. Merlot conduzido em latada. Houve 12 tratamentos e três repetições, sendo o delineamento experimental em blocos casualizados. Os tratamentos constituíram-se da testemunha e de 11 diferentes modalidades de poda verde, ou seja, desbrota, desponta e desfolha, algumas delas em diferentes épocas do ciclo vegetativo da videira. O componente principal 1, da análise de componentes principais (ACP) feita em cada ano, separadamente, mostra que o tratamento 10 (desbrota + desponta + desfolha realizada no início da floração, eliminando-se as folhas abaixo dos cachos) discriminou-se nos quatro anos, e os tratamentos 7 (desfolha realizada 21 dias antes da colheita, eliminando-se metade das folhas abaixo dos cachos) e 6 (desfolha realizada 21 dias antes da colheita, eliminando-se as folhas abaixo dos cachos), em três deles; a ACP da média dos quatro anos também evidencia essa discriminação entre eles. Constata-se que o tratamento 10 foi um dos que tiveram intensidade de poda verde mais intensa, caracterizando-se por variáveis indicativas de plantas com vigor e produtividade mais baixos que os demais
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector
A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
- …
