80 research outputs found
Acceleration of Relativistic Protons during the 20 January 2005 Flare and CME
The origin of relativistic solar protons during large flare/CME events has
not been uniquely identified so far.We perform a detailed comparative analysis
of the time profiles of relativistic protons detected by the worldwide network
of neutron monitors at Earth with electromagnetic signatures of particle
acceleration in the solar corona during the large particle event of 20 January
2005. The intensity-time profile of the relativistic protons derived from the
neutron monitor data indicates two successive peaks. We show that microwave,
hard X-ray and gamma-ray emissions display several episodes of particle
acceleration within the impulsive flare phase. The first relativistic protons
detected at Earth are accelerated together with relativistic electrons and with
protons that produce pion decay gamma-rays during the second episode. The
second peak in the relativistic proton profile at Earth is accompanied by new
signatures of particle acceleration in the corona within approximatively 1
solar radius above the photosphere, revealed by hard X-ray and microwave
emissions of low intensity, and by the renewed radio emission of electron beams
and of a coronal shock wave. We discuss the observations in terms of different
scenarios of particle acceleration in the corona.Comment: 22 pages, 5 figure
Performance, carcass parameters, meat quality and lipid profile from feedlot young bulls fed cottonseed
State of the world’s plants and fungi 2020
Kew’s State of the World’s Plants and Fungi project provides assessments of our current knowledge of the diversity of plants and fungi on Earth, the global threats that they face, and the policies to safeguard them. Produced in conjunction with an international scientific symposium, Kew’s State of the World’s Plants and Fungi sets an important international standard from which we can annually track trends in the global status of plant and fungal diversity
The Cholecystectomy As A Day Case (CAAD) score: a validated score of preoperative predictors of successful day-case cholecystectomy using the CholeS data set
Background:
Day-case surgery is associated with significant patient and cost benefits. However, only 43% of cholecystectomy patients are discharged home the same day. One hypothesis is day-case cholecystectomy rates, defined as patients discharged the same day as their operation, may be improved by better assessment of patients using standard preoperative variables.
Methods:
Data were extracted from a prospectively collected data set of cholecystectomy patients from 166 UK and Irish hospitals (CholeS). Cholecystectomies performed as elective procedures were divided into main (75%) and validation (25%) data sets. Preoperative predictors were identified, and a risk score of failed day case was devised using multivariate logistic regression. Receiver operating curve analysis was used to validate the score in the validation data set.
Results:
Of the 7426 elective cholecystectomies performed, 49% of these were discharged home the same day. Same-day discharge following cholecystectomy was less likely with older patients (OR 0.18, 95% CI 0.15–0.23), higher ASA scores (OR 0.19, 95% CI 0.15–0.23), complicated cholelithiasis (OR 0.38, 95% CI 0.31 to 0.48), male gender (OR 0.66, 95% CI 0.58–0.74), previous acute gallstone-related admissions (OR 0.54, 95% CI 0.48–0.60) and preoperative endoscopic intervention (OR 0.40, 95% CI 0.34–0.47). The CAAD score was developed using these variables. When applied to the validation subgroup, a CAAD score of ≤5 was associated with 80.8% successful day-case cholecystectomy compared with 19.2% associated with a CAAD score >5 (p < 0.001).
Conclusions:
The CAAD score which utilises data readily available from clinic letters and electronic sources can predict same-day discharges following cholecystectomy
Defining public examination standards
4.95SIGLELD:81/28753(Defining). / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Environmental data provide marginal benefit for predicting climate adaptation
Climate change poses a major challenge for both natural and cultivated species. Genomic tools are increasingly used in both conservation and breeding to identify adaptive loci that can be used to guide management in future climates. Here, we study the utility of climate and genomic data for identifying promising alleles using common gardens of a large, geographically diverse sample of traditional maize varieties to evaluate multiple approaches. First, we used genotype data to predict environmental characteristics of germplasm collections to identify varieties that may be pre-adapted to target environments. Second, we used environmental GWAS (envGWAS) to identify loci associated with historical divergence along climatic gradients. Finally, we compared the value of environmental data and envGWAS-prioritized loci to genomic data for prioritizing traditional varieties. We find that maize yield traits are best predicted by genome-wide relatedness and population structure, and that incorporating envGWAS-identified variants or environment-of-origin provide little additional predictive information. While our results suggest that environmental data provide limited benefit in predicting fitness-related phenotypes, environmental GWAS is nonetheless a potentially powerful approach to identify individual novel loci associated with adaptation, especially when coupled with high density genotyping
- …
