2,536 research outputs found
Perturbative spectrum of Trapped Weakly Interacting Bosons in Two Dimensions
We study a trapped Bose-Einstein condensate under rotation in the limit of
weak, translational and rotational invariant two-particle interactions. We use
the perturbation-theory approach (the large-N expansion) to calculate the
ground-state energy and the excitation spectrum in the asymptotic limit where
the total number of particles N goes to infinity while keeping the total
angular momentum L finite. Calculating the probabilities of different
configurations of angular momentum in the exact eigenstates gives us a clear
view of the physical content of excitations. We briefly discuss the case of
repulsive contact interaction.Comment: Revtex, 10 pages, 1 table, to appear in Phys. Rev.
Landau-Khalatnikov two-fluid hydrodynamics of a trapped Bose gas
Starting from the quantum kinetic equation for the non-condensate atoms and
the generalized Gross-Pitaevskii equation for the condensate, we derive the
two-fluid hydrodynamic equations of a trapped Bose gas at finite temperatures.
We follow the standard Chapman-Enskog procedure, starting from a solution of
the kinetic equation corresponding to the complete local equilibrium between
the condensate and the non-condensate components. Our hydrodynamic equations
are shown to reduce to a form identical to the well-known Landau-Khalatnikov
two-fluid equations, with hydrodynamic damping due to the deviation from local
equilibrium. The deviation from local equilibrium within the thermal cloud
gives rise to dissipation associated with shear viscosity and thermal
conduction. In addition, we show that effects due to the deviation from the
diffusive local equilibrium between the condensate and the non-condensate
(recently considered by Zaremba, Nikuni and Griffin) can be described by four
frequency-dependent second viscosity transport coefficients. We also derive
explicit formulas for all the transport coefficients. These results are used to
introduce two new characteristic relaxation times associated with hydrodynamic
damping. These relaxation times give the rate at which local equilibrium is
reached and hence determine whether one is in the two-fluid hydrodynamic
region.Comment: 26 pages, 3 postscript figures, submitted to PR
Model of a fluid at small and large length scales and the hydrophobic effect
We present a statistical field theory to describe large length scale effects
induced by solutes in a cold and otherwise placid liquid. The theory divides
space into a cubic grid of cells. The side length of each cell is of the order
of the bulk correlation length of the bulk liquid. Large length scale states of
the cells are specified with an Ising variable. Finer length scale effects are
described with a Gaussian field, with mean and variance affected by both the
large length scale field and by the constraints imposed by solutes. In the
absence of solutes and corresponding constraints, integration over the Gaussian
field yields an effective lattice gas Hamiltonian for the large length scale
field. In the presence of solutes, the integration adds additional terms to
this Hamiltonian. We identify these terms analytically. They can provoke large
length scale effects, such as the formation of interfaces and depletion layers.
We apply our theory to compute the reversible work to form a bubble in liquid
water, as a function of the bubble radius. Comparison with molecular simulation
results for the same function indicates that the theory is reasonably accurate.
Importantly, simulating the large length scale field involves binary arithmetic
only. It thus provides a computationally convenient scheme to incorporate
explicit solvent dynamics and structure in simulation studies of large
molecular assemblies
Large oxygen-isotope effect in Sr_{0.4}K_{0.6}BiO_{3}: Evidence for phonon-mediated superconductivity
Oxygen-isotope effect has been investigated in a recently discovered
superconductor Sr_{0.4}K_{0.6}BiO_{3}. This compound has a distorted perovskite
structure and becomes superconducting at about 12 K. Upon replacing ^{16}O with
^{18}O by 60-80%, the T_c of the sample is shifted down by 0.32-0.50 K,
corresponding to an isotope exponent of alpha_{O} = 0.40(5). This isotope
exponent is very close to that for a similar bismuthate superconductor
Ba_{1-x}K_{x}BiO_{3} with T_c = 30 K. The very distinctive doping and T_c
dependencies of alpha_{O} observed in bismuthates and cuprates suggest that
bismuthates should belong to conventional phonon-mediated superconductors while
cuprates might be unconventional supercondutors.Comment: 9 pages, 5 figure
Quantum control and the Strocchi map
Identifying the real and imaginary parts of wave functions with coordinates
and momenta, quantum evolution may be mapped onto a classical Hamiltonian
system. In addition to the symplectic form, quantum mechanics also has a
positive-definite real inner product which provides a geometrical
interpretation of the measurement process. Together they endow the quantum
Hilbert space with the structure of a K\"{a}ller manifold. Quantum control is
discussed in this setting. Quantum time-evolution corresponds to smooth
Hamiltonian dynamics and measurements to jumps in the phase space. This adds
additional power to quantum control, non unitarily controllable systems
becoming controllable by ``measurement plus evolution''. A picture of quantum
evolution as Hamiltonian dynamics in a classical-like phase-space is the
appropriate setting to carry over techniques from classical to quantum control.
This is illustrated by a discussion of optimal control and sliding mode
techniques.Comment: 16 pages Late
Trispectrum from Ghost Inflation
Ghost inflation predicts almost scale-invariant primordial cosmological
perturbations with relatively large non-Gaussianity. The bispectrum is known to
have a large contribution at the wavenumbers forming an equilateral triangle
and the corresponding nonlinear parameter is typically of
order . In this paper we calculate trispectrum from ghost inflation
and show that the corresponding nonlinear parameter is typically of
order . We investigate the shape dependence of the trispectrum and see
that it has some features different from DBI inflation. Therefore, our result
may be useful as a template to distinguish ghost inflation from other models of
inflation by future experiments.Comment: 25 pages, 10 figure
Computing the first eigenpair of the p-Laplacian via inverse iteration of sublinear supersolutions
We introduce an iterative method for computing the first eigenpair
for the -Laplacian operator with homogeneous Dirichlet
data as the limit of as , where
is the positive solution of the sublinear Lane-Emden equation
with same boundary data. The method is
shown to work for any smooth, bounded domain. Solutions to the Lane-Emden
problem are obtained through inverse iteration of a super-solution which is
derived from the solution to the torsional creep problem. Convergence of
to is in the -norm and the rate of convergence of
to is at least . Numerical evidence is
presented.Comment: Section 5 was rewritten. Jed Brown was added as autho
Persistent currents in a Bose-Einstein condensate in the presence of disorder
We examine bosonic atoms that are confined in a toroidal,
quasi-one-dimensional trap, subjected to a random potential. The resulting
inhomogeneous atomic density is smoothened for sufficiently strong, repulsive
interatomic interactions. Statistical analysis of our simulations show that the
gas supports persistent currents, which become more fragile due to the
disorder.Comment: 5 pages, RevTex, 3 figures, revised version, to appear in JLT
Universal quantum interfaces
To observe or control a quantum system, one must interact with it via an
interface. This letter exhibits simple universal quantum interfaces--quantum
input/output ports consisting of a single two-state system or quantum bit that
interacts with the system to be observed or controlled. It is shown that under
very general conditions the ability to observe and control the quantum bit on
its own implies the ability to observe and control the system itself. The
interface can also be used as a quantum communication channel, and multiple
quantum systems can be connected by interfaces to become an efficient universal
quantum computer. Experimental realizations are proposed, and implications for
controllability, observability, and quantum information processing are
explored.Comment: 4 pages, 3 figures, RevTe
- …
