51 research outputs found

    CD74-downregulation of placental macrophage-trophoblastic interactions in preeclampsia

    Get PDF
    Rationale: MWe hypothesized that Cluster of differentiation 74 (CD74) downregulation on placental macrophages, leading to altered macrophage-trophoblast interaction, is involved in preeclampsia. Objective: Preeclamptic pregnancies feature hypertension, proteinuria and placental anomalies. Feto-placental macrophages regulate villous trophoblast differentiation during placental development. Disturbance of this well-balanced regulation can lead to pathological pregnancies. Methods and Results: We performed whole genome expression analysis of placental tissue. CD74 was one of the most downregulated genes in placentas from preeclamptic women. By RT-PCR, we confirmed this finding in early onset (<34 gestational week, n=26) and late onset (≥34 gestational week, n=24) samples from preeclamptic women, compared to healthy pregnant controls (n=28). CD74 protein levels were analyzed by Western blot and flow cytometry. We identified placental macrophages to express CD74 by immunofluorescence, flow cytometry and RT-PCR. CD74-positive macrophages were significantly reduced in preeclamptic placentas compared to controls. CD74-silenced macrophages showed that the adhesion molecules ALCAM, ICAM4, and Syndecan-2, as well as macrophage adhesion to trophoblasts were diminished. Naïve and activated macrophages lacking CD74 showed a shift towards a pro-inflammatory signature with an increased secretion of TNF , CCL5, and MCP-1, when co-cultured with trophoblasts compared to control macrophages. Trophoblasts stimulated by these factors express more CYP2J2, sFlt1, TNF and IL-8. CD74-knockout mice showed disturbed placental morphology, reduced junctional zone, smaller placentas and impaired spiral artery remodeling with fetal growth restriction. Conclusions: CD74 downregulation in placental macrophages is present in preeclampsia. CD74 downregulation leads to altered macrophage activation towards a pro-inflammatory signature and a disturbed crosstalk with trophoblasts

    Preeclampsia and uteroplacental acute atherosis: immune and inflammatory factors

    No full text
    Acute atherosis (Aa) affects uteroplacental spiral arteries in 20-40% of cases of preeclampsia. Its hallmark is lipid-filled, CD68-positive foam cells. It usually develops in the decidua (the pregnancy endometrium) at the distal ends of arteries that are often unremodelled in their proximal segments. Aa resembles the early stages of atherosclerosis, which becomes symptomatic in the middle-aged and elderly, in contrast to the young age of pregnant women with Aa. Although the mechanisms of Aa are largely unknown, they are likely to resemble those of early atherosclerosis, which is an inflammatory lesion of the arterial wall. However, Aa is likely to have added pregnancy-specific features. Because it also occurs in normotensive pregnancies, complicated by foetal growth restriction, diabetes mellitus or autoimmune disease or even without any complications, we suggest that Aa is the final manifestation of several inflammatory processes. We revisit an old proposition that immunological incompatibility between mother and foetus may sometimes induce Aa. We propose that excessive inflammatory activation, of other aetiologies, primarily in the decidua basalis, may explain the different ways in which Aa occurs. We speculate that the subset of women who develop these lesions may be at an increased risk of atherosclerotic arterial disease later in life. We hypothesise that use of anti-atherogenic statins during established preeclampsia may ameliorate Aa, improve uteroplacental perfusion and enhance pregnancy outcome

    Monitoring and evaluating staff support

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:m02/36974 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Decidua basalis and acute atherosis: Expression of atherosclerotic foam cell associated proteins

    No full text
    Introduction Uteroplacental acute atherosis is frequently observed in preeclampsia, and shares features with early atherosclerotic lesions, including artery wall foam cells. The lipid-associated proteins FABP4 (fatty acid binding protein 4), perilipin-2, and LOX-1 (lectin-like oxidized LDL-receptor 1) are involved in atherosclerotic foam cell formation. Increased levels of these proteins have been associated with preeclampsia systemically and in placental tissue. Their role in acute atherosis is yet unidentified. Our aim was to describe the presence of these proteins in acute atherosis, and compare our findings to what is known in early atherosclerotic lesions. Methods Serial sections of decidua basalis tissue from 12 normotensive (4 with acute atherosis) and 23 preeclamptic pregnancies (16 with acute atherosis) were stained with HE and immunostained for CK7, CD68, FABP4, perilipin-2, and LOX-1. Artery wall and perivascular protein expression was assessed in 190 spiral artery sections; 55 with acute atherosis. Results Acute atherosis foam cells were commonly positive for perilipin-2 (55%), less often for FABP4 (13%), and never for LOX-1. LOX-1 was frequently observed in intramural trophoblasts of normal spiral arteries. Perivascularly, LOX-1 positivity of decidual stromal cells surrounding arteries with acute atherosis was significantly increased as compared to arteries lacking acute atherosis (38% vs. 15%, p < 0.001). Discussion We found that perilipin-2 and FABP4 are expressed by acute atherosis foam cells, similar to atherosclerosis, supporting possible shared pathways for foam cell generation. Unlike atherosclerosis, LOX-1 is not present in acute atherosis, possibly explained by pregnancy-specific routes to decidua basalis foam cell generation
    corecore