8 research outputs found
Copper(II) binding to the toxic fragment 180-193 of the prion
Copper(II) binding to the toxic fragment 180-193 of the prio
Angular momentum role in cross section energy coherence of heavy ion dissipative collisions
Preequilibrium GDR excitation and entrance channel angular momentum effects
The energy spectra of the γ-rays emitted in the 35Cl + 92Mo reaction at incident energy E = 260 MeV were measured in coincidence with the ejectiles produced in dissipative reaction events. The cumulative energy spectrum of the γ-rays coming from the decay of the ejectiles was calculated within the statistical model and its comparison to the experimental spectrum evidences an excess in the data for Eγ = 8 to 12 MeV. Such an excess, fitted with a Lorentz curve, is attributed to the preequilibrium GDR γ-decay of the intermediate dinuclear system. The centroid energy of the Lorentz curve corresponds to a dipole oscillation along the symmetry axis of the system and its width is found to be comparable to that of the ground state GDR low energy component of the deformed dinucleus. The small quantal dispersion Δl = (10.3 ± 0.1)ħ of the entrance channel angular momentum, determined by analysing the dissipative fragment angular distribution in the framework of the Strutinsky model, is suggested to limit the broadening of the preequilibrium GDR width
Geophysical validation of temperature retrieved by the ESA Level 2 processor from MIPAS/ENVISAT measurements
~(27)Al+~(27)Al耗散反应截面涨落的角度关联测量
在2 7Al+ 2 7Al(Elab≈ 1 2 0MeV)耗散反应激发函数涨落的实验研究中 ,首次在较大的角度范围内获得截面涨落的角度关联系数和角度关联函数 .实验结果表明 ,角度关联函数的形状呈现明显的非对称性 ,角度相干宽度至少为 4 0°;截面涨落在前后角区表现出明显不同的角度相关性
Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms
An intercomparison of aerosol backscatter lidar algorithms was performed in 2001 within the framework of the European Aerosol Research Lidar Network to Establish an Aerosol Climatology (EARLINET). The objective of this research was to test the correctness of the algorithms and the influence of the lidar ratio used by the various lidar teams involved in the EARLINET for calculation of backscatter-coefficient profiles from the lidar signals. The exercise consisted of processing synthetic lidar signals of various degrees of difficulty. One of these profiles contained height-dependent lidar ratios to test the vertical influence of those profiles on the various retrieval algorithms. Furthermore, a realistic incomplete overlap of laser beam and receiver field of view was introduced to remind the teams to take great care in the nearest range to the lidar. The intercomparison was performed in three stages with increasing knowledge on the input parameters. First, only the lidar signals were distributed; this is the most realistic stage. Afterward the lidar ratio profiles and the reference values at calibration height were provided. The unknown height-dependent lidar ratio had the largest influence on the retrieval, whereas the unknown reference value was of minor importance. These results show the necessity of making additional independent measurements, which can provide us with a suitable approximation of the lidar ratio. The final stage proves in general, that the data evaluation schemes of the different groups of lidar systems work well
