5 research outputs found

    Sezione C- Parametri Ambientali

    No full text
    I Parametri Ambientali necessari alla progettazione edile ed architettonica vengono analizzati in relazione alla ecosostenibilità

    Transport properties of high boiling point Hydrocarbons

    No full text
    Hydrocarbons Transport properties

    Thermophysical properties of greenhouse gases: Thermal conductivity and Dynamic Viscosity as function of temperature and pressure

    No full text
    Thermal conductivity and dynamic viscosity of greenhouse gases at different temperatures an pressure

    Transport Properties of Organic Liquids

    No full text
    The liquid state is possibly the most difficult and intriguing state of matter to model. Organic liquids are required, mainly as working fluids, in almost all industrial activities and in most appliances (e.g. in air conditioning). Transport properties (namely dynamic viscosity and thermal conductivity) are possibly the most important properties for the design of devices and appliances. The aim of this book is to present both theoretical approaches and the latest experimental advances on the issue, and to merge them into a wider approach. It concentrates on applicability of models.This book is organized into five chapters plus a data collection. The chapters discuss the following topics: the liquid state and some well-know theories able to explain the behaviour of liquids; a rather complete review of models, based on theoretical assumptions and/or upon physical paradigms, to evaluate heat transfer in organic liquids; a review of several well-known semi-empirical methods to predict the thermal conductivity coefficient of organic liquids in their saturated liquid or slightly sub-cooled state as a function of the temperature; momentum transfer on the dynamic viscosity coefficient. The data collection contains most of the experimental points available in literature concerning thermal conductivity and dynamic viscosity of organic liquids

    Assessing the representativeness of thermal comfort in outdoor spaces

    No full text
    This paper presents preliminary findings of an outdoor thermal comfort study conducted in urban area to evaluate the representative Predicted Mean Vote index. Thermal comfort in outdoor urban spaces is often faced with the task of using large amounts of data that yields meaningful information concerning the thermal sensation. It is essential to interpret correctly meteorological and thermal comfort data. In particular, it is important to interpret data using an appropriate statistical analysis, and the analysis of thermal comfort presupposes a synthesis of information derived from series of temporal data. It is indispensable to deal with realistic data and an actual day should be considered, but the widely used average day is not an actual day. On the contrary, the representative day is made of the actual data of the day, in the period considered, where the sum of the mean-square differences among its monitored quantities, averaged within each hour, and the same quantities for all other days at the same hour, is minimised. Goal of this research is to assess the representativeness of the thermal comfort indices provided using a representative day technique. Specifically, a new tool has been developed using a powerful and useful environment for symbolic and numerical computing and data visualization such as Wolfram MathematicaTM, aiming at linking information computed by a bio-climate model to the representative day technique. The possibility of assessing the diurnal variation of PMV thermal comfort index by introducing the Representative Day technique has been evaluated in order to gather information on the correlation between thermal comfort and meteorological parameters. A case study has been analysed in order to improve the microclimate in an outdoor space located in a typical Mediterranean area and a comparison with CFD code, namely ENVI-MET, has been reported. This technique can prove to be a very important tool for identifying both anomalous and standard behaviours of comfort indices within the selected period in outdoor urban spaces
    corecore