29 research outputs found

    Correct use of non-indexed eGFR for drug dosing and renal drug-related problems at hospital admission

    Get PDF
    PURPOSE Two to seven percent of the German adult population has a renal impairment (RI) with an estimated glomerular filtration rate (eGFR) < 60 ml/min/1.73m2. This often remains unrecognized and adjustment of drug therapy is lacking. To determine renal function in clinical routine, the CKD-EPI equation is used to calculate an indexed eGFR (ml/min/1.73m2). For drug dosing, it has to be individualized to a non-indexed eGFR (ml/min) by the patient's body surface area. Here, we investigated the number of patients admitted to urological wards of a teaching hospital with RI between July and December 2016. Additionally, we correctly used the eGFRnon-indexed for drug and dosage adjustments and to analyse the use of renal risk drugs (RRD) and renal drug-related problems (rDRP). METHODS In a retrospective observational study, urological patients with pharmacist-led medication reconciliation at hospital admission and eGFRindexed (CKD-EPI) of 15-59 ml/min/1.73m2 were identified. Indexed eGFR (ml/min/1.73m2) was recalculated with body surface area to non-indexed eGFR (ml/min) for correct drug dosing. Medication at admission was reviewed for RRD and based on the eGFRnon-indexed for rDRP, e.g. inappropriate dose or contraindication. RESULTS Of 1320 screened patients, 270 (20.5%) presented with an eGFRindexed of 15–59 ml/min/1.73m2. After readjustment, 203 (15.4%) patients had an eGFRnon-indexed of 15–59 ml/min. Of these, 190 (93.6%) used ≥ 1 drugs at admission with 660 of 1209 (54.7%) drugs classified as RRD. At least one rDRP was identified in 115 (60.5%) patients concerning 264 (21.8%) drugs. CONCLUSION Renal impairment is a common risk factor for medication safety in urologic patients admitted to a hospital. Considerable shifts were seen in eGFR-categories when correctly calculating eGFRnon-indexed for drug dosing purposes. The fact that more than half of the study patients showed rDRP at hospital admission underlines the need to consider this risk factor appropriately

    Current worldwide nuclear cardiology practices andradiationexposure: results from the 65 country IAEA nuclear cardiology protocols cross-sectional study (INCAPS)

    Get PDF
    Aims To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiationoptimizing 'best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. Methods and results We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight 'best practices' relating to radiation exposurewere identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more 'best practices' had lower EDs Conclusion Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally

    Nuclear cardiology practice and associated radiation doses in Europe: results of the IAEA Nuclear Cardiology Protocols Study (INCAPS) for the 27 European countries

    Get PDF
    Purpose: Nuclear cardiology is widely used to diagnose coronary artery disease and to guide patient management, but data on current practices, radiation dose-related best practices, and radiation doses are scarce. To address these issues, the IAEA conducted a worldwide study of nuclear cardiology practice. We present the European subanalysis. Methods: In March 2013, the IAEA invited laboratories across the world to document all SPECT and PET studies performed in one week. The data included age, gender, weight, radiopharmaceuticals, injected activities, camera type, positioning, hardware and software. Radiation effective dose was calculated for each patient. A quality score was defined for each laboratory as the number followed of eight predefined best practices with a bearing on radiation exposure (range of quality score 0&nbsp;–&nbsp;8). The participating European countries were assigned to regions (North, East, South, and West). Comparisons were performed between the four European regions and between Europe and the rest-of-the-world (RoW). Results: Data on 2,381 European patients undergoing nuclear cardiology procedures in 102 laboratories in 27 countries were collected. A cardiac SPECT study was performed in 97.9&nbsp;% of the patients, and a PET study in 2.1&nbsp;%. The average effective dose of SPECT was 8.0 ± 3.4&nbsp;mSv (RoW 11.4 ± 4.3&nbsp;mSv; P &lt; 0.001) and of PET was 2.6 ± 1.5&nbsp;mSv (RoW 3.8 ± 2.5&nbsp;mSv; P &lt; 0.001). The mean effective doses of SPECT and PET differed between European regions (P &lt; 0.001 and P = 0.002, respectively). The mean quality score was 6.2 ± 1.2, which was higher than the RoW score (5.0 ± 1.1; P &lt; 0.001). Adherence to best practices did not differ significantly among the European regions (range 6 to 6.4; P = 0.73). Of the best practices, stress-only imaging and weight-adjusted dosing were the least commonly used. Conclusion: In Europe, the mean effective dose from nuclear cardiology is lower and the average quality score is higher than in the RoW. There is regional variation in effective dose in relation to the best practice quality score. A possible reason for the differences between Europe and the RoW could be the safety culture fostered by actions under the Euratom directives and the implementation of diagnostic reference levels. Stress-only imaging and weight-adjusted activity might be targets for optimization of European nuclear cardiology practice
    corecore