54 research outputs found
Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species
• Here, we tested two hypotheses: shading increases light interception efficiency (LIE) of broadleaved tree seedlings, and shade-tolerant species exhibit larger LIEs than do shade-intolerant ones. The impact of seedling size was taken into account to detect potential size-independent effects on LIE. LIE was defined as the ratio of mean light intercepted by leaves to light intercepted by a horizontal surface of equal area. • Seedlings from five species differing in shade tolerance (Acer saccharum, Betula alleghaniensis, A. pseudoplatanus, B. pendula, Fagus sylvatica) were grown under neutral shading nets providing 36, 16 and 4% of external irradiance. Seedlings (1- and 2-year-old) were three-dimensionally digitized, allowing calculation of LIE. • Shading induced dramatic reduction in total leaf area, which was lowest in shade-tolerant species in all irradiance regimes. Irradiance reduced LIE through increasing leaf overlap with increasing leaf area. There was very little evidence of significant size-independent plasticity of LIE. • No relationship was found between the known shade tolerance of species and LIE at equivalent size and irradiance
A powerful bursting radio source towards the Galactic Centre
Transient astronomical sources are typically powered by compact objects and
usually signify highly explosive or dynamic events. While radio astronomy has
an impressive record of obtaining high time resolution observations, usually it
is achieved in quite narrow fields-of-view. Consequently, the dynamic radio sky
is poorly sampled, in contrast to the situation in the X- and gamma-ray bands
in which wide-field instruments routinely detect transient sources. Here we
report a new transient source, GCRT J1745-3009, detected in 2002 during a
moderately wide-field radio transient monitoring program of the Galactic center
(GC) region at 0.33 GHz. The characteristics of its bursts are unlike those
known for any other class of radio transient. If located in or near the GC, its
brightness temperature (~10^16 K) and the implied energy density within GCRT
J1745-3009 vastly exceeds that observed in most other classes of radio
astronomical sources, and is consistent with coherent emission processes rarely
observed. We conclude that GCRT J1745-3009 is the first member of a new class
of radio transient sources, the first of possibly many new classes to be
identified through current and upcoming radio surveys.Comment: 16 pages including 3 figures. Appears in Nature, 3 March 200
Radio Emission from Ultra-Cool Dwarfs
The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very
low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed
that these objects can generate and dissipate powerful magnetic fields. Radio
observations provide unparalleled insight into UCD magnetism: detections extend
to brown dwarfs with temperatures <1000 K, where no other observational probes
are effective. The data reveal that UCDs can generate strong (kG) fields,
sometimes with a stable dipolar structure; that they can produce and retain
nonthermal plasmas with electron acceleration extending to MeV energies; and
that they can drive auroral current systems resulting in significant
atmospheric energy deposition and powerful, coherent radio bursts. Still to be
understood are the underlying dynamo processes, the precise means by which
particles are accelerated around these objects, the observed diversity of
magnetic phenomenologies, and how all of these factors change as the mass of
the central object approaches that of Jupiter. The answers to these questions
are doubly important because UCDs are both potential exoplanet hosts, as in the
TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.Comment: 19 pages; submitted chapter to the Handbook of Exoplanets, eds. Hans
J. Deeg and Juan Antonio Belmonte (Springer-Verlag
Discovery of Radio Emission from the Brown Dwarf LP944-20
Brown dwarfs are classified as objects which are not massive enough to
sustain nuclear fusion of hydrogen, and are distinguished from planets by their
ability to burn deuterium. Old (>10 Myr) brown dwarfs are expected to possess
short-lived magnetic fields and, since they no longer generate energy from
collapse and accretion, weak radio and X-ray emitting coronae. Several efforts
have been undertaken in the past to detect chromospheric activity from the
brown dwarf LP944-20 at X-ray and optical wavelengths, but only recently an
X-ray flare from this object was detected. Here we report on the discovery of
quiescent and flaring radio emission from this source, which represents the
first detection of persistent radio emission from a brown dwarf, with
luminosities that are several orders of magnitude larger than predicted from an
empirical relation between the X-ray and radio luminosities of many stellar
types. We show in the context of synchrotron emission, that LP944-20 possesses
an unusually weak magnetic field in comparison to active dwarf M stars, which
might explain the null results from previous optical and X-ray observations of
this source, and the deviation from the empirical relations.Comment: Accepted to Natur
Copy number alterations and allelic ratio in relation to recurrence of rectal cancer
BACKGROUND: In rectal cancer, total mesorectal excision surgery combined with preoperative (chemo)radiotherapy reduces local recurrence rates but does not improve overall patient survival, a result that may be due to the harmful side effects and/or co-morbidity of preoperative treatment. New biomarkers are needed to facilitate identification of rectal cancer patients at high risk for local recurrent disease. This would allow for preoperative (chemo)radiotherapy to be restricted to high-risk patients, thereby reducing overtreatment and allowing personalized treatment protocols. We analyzed genome-wide DNA copy number (CN) and allelic alterations in 112 tumors from preoperatively untreated rectal cancer patients. Sixty-six patients with local and/or distant recurrent disease were compared to matched controls without recurrence. Results were validated in a second cohort of tumors from 95 matched rectal cancer patients. Additionally, we performed a meta-analysis that included 42 studies reporting on CN alterations in colorectal cancer and compared results to our own data. RESULTS: The genomic profiles in our study were comparable to other rectal cancer studies. Results of the meta-analysis supported the hypothesis that colon cancer and rectal cancer may be distinct disease entities. In our discovery patient study cohort, allelic retention of chromosome 7 was significantly associated with local recurrent disease. Data from the validation cohort were supportive, albeit not statistically significant, of this finding. CONCLUSIONS: We showed that retention of heterozygosity on chromosome 7 may be associated with local recurrence in rectal cancer. Further research is warranted to elucidate the mechanisms and effect of retention of chromosome 7 on the development of local recurrent disease in rectal cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1550-0) contains supplementary material, which is available to authorized users
Quasi-periodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere
Cosmic rays and solar energetic particles may be accelerated to relativistic
energies by shock waves in astrophysical plasmas. On the Sun,
shocks and particle acceleration are often associated with the eruption
of magnetized plasmoids, called coronal mass ejections (CMEs).
However, the physical relationship between CMEs and shock particle
acceleration is not well understood. Here, we use extreme ultraviolet,
radio and white-light imaging of a solar eruptive event on 22 September
2011 to show that a CME-induced shock (Alfvén Mach number 2:4+0:7
-0:8) was coincident with a coronal wave and an intense metric radio burst
generated by intermittent acceleration of electrons to kinetic energies
of 2{46 keV (0.1{0.4 c). Our observations show that plasmoid-driven
quasi-perpendicular shocks are capable of producing quasi-periodic acceleration
of electrons, an effect consistent with a turbulent or rippled
plasma shock surface
80 MHz Measurements of Jupiter's Synchrotron Emission
The spectrum of Jupiter's synchrotron emission was extended to lower frequencies by Gower (1968), who used a meridian transit interferometer to make measurements at 81�5 MHz. However, the elements of this interferometer had primary beams 1��2 � 13� to half-voltage points and the correction to the observed interferometer pattern demanded by the presence of confusing sources within the primary beams was about three times the amplitude deduced for Jupiter. Consequently, it is important that an independent check be made of the measured value of 4�5 f.u.�</jats:p
- …
