200 research outputs found
Enteric-coated sodium bicarbonate supplementation improves high-intensity cycling performance in trained cyclists
Purpose: Enteric-coated sodium bicarbonate (NaHCO3) can attenuate gastrointestinal (GI) symptoms following acute bicarbonate loading, although the subsequent effects on exercise performance have not been investigated. The purpose of this study was to examine the effects of enteric-coated NaHCO3 supplementation on high-intensity exercise performance and GI symptoms. Methods: Eleven trained male cyclists completed three 4 km time trials after consuming; a placebo or 0.3 g∙kg–1 body mass NaHCO3 in enteric-coated or gelatin capsules. Exercise trials were timed with individual peak blood bicarbonate ion concentration ([HCO3–]). Blood acid–base balance was measured pre-ingestion, pre-exercise, and post-exercise, whereas GI symptoms were recorded pre-ingestion and immediately pre-exercise. Results: Pre-exercise blood [HCO3−] and potential hydrogen (pH) were greater for both NaHCO3 conditions (P < 0.0005) when compared to placebo. Performance time was faster with enteric-coated (− 8.5 ± 9.6 s, P = 0.044) and gelatin (− 9.6 ± 7.2 s, P = 0.004) NaHCO3 compared to placebo, with no significant difference between conditions (mean difference = 1.1 ± 5.3 s, P = 1.000). Physiological responses were similar between conditions, although blood lactate ion concentration was higher with gelatin NaHCO3 (2.4 ± 1.7 mmol∙L–1, P = 0.003) compared with placebo. Furthermore, fewer participants experienced GI symptoms with enteric-coated (n = 3) compared to gelatin (n = 7) NaHCO3. Discussion: Acute enteric-coated NaHCO3 consumption mitigates GI symptoms at the onset of exercise and improves subsequent 4 km cycling TT performance. Athletes who experience GI side-effects after acute bicarbonate loading may, therefore, benefit from enteric-coated NaHCO3 supplementation prior to exercise performance.</p
Recommended from our members
Subgrouping the autism "spectrum": reflections on DSM-5
DSM-5 has moved autism from the level of subgroups ("apples and oranges") to the prototypical level ("fruit"). But making progress in research, and ultimately improving clinical practice, will require identifying subgroups within the autism spectrum
Growing old with the immune system: a study of immunosenescence in the zebra finch (Taeniopygia guttata)
Immunosenescence has not received much attention in birds and the few existing studies indicate that the occurrence of immunosenescence and/or its extent may differ between species. In addition, not much information is available on the immunosenescence patterns of different immune parameters assessed simultaneously in both sexes within a single species. The present study reports the results on immunosenescence in innate immunity and both cellular and humoral acquired immunity of both sexes in a captive population of zebra finch (Taeniopygia guttata) using three age groups (approximately 0.2, 2.5 and 5.1 years). Both male and female finches showed an inverse U-shaped pattern in cellular immune function with age, quantified by a PHA response. Males showed stronger responses than females at all ages. In contrast, an increase with age in humoral immunity, quantified through total plasma immunoglobulin Y levels, was found in both sexes. However, our measurements of innate immunity measured through the bacteria-killing ability against Escherichia coli gave inconclusive results. Still, we conclude that both cellular and humoral acquired immunity are susceptible to immunosenescence, and that the sexes differ in cellular immunity
TOI-1634 b: An Ultra-short-period Keystone Planet Sitting inside the M-dwarf Radius Valley
Studies of close-in planets orbiting M dwarfs have suggested that the M dwarf
radius valley may be well-explained by distinct formation timescales between
enveloped terrestrials, and rocky planets that form at late times in a
gas-depleted environment. This scenario is at odds with the picture that
close-in rocky planets form with a primordial gaseous envelope that is
subsequently stripped away by some thermally-driven mass loss process. These
two physical scenarios make unique predictions of the rocky/enveloped
transition's dependence on orbital separation such that studying the
compositions of planets within the M dwarf radius valley may be able to
establish the dominant physics. Here, we present the discovery of one such
keystone planet: the ultra-short period planet TOI-1634 b ( days,
, ) orbiting a
nearby M2 dwarf (, , ) and
whose size and orbital period sit within the M dwarf radius valley. We confirm
the TESS-discovered planet candidate using extensive ground-based follow-up
campaigns, including a set of 32 precise radial velocity measurements from
HARPS-N. We measure a planetary mass of ,
which makes TOI-1634 b inconsistent with an Earth-like composition at
and thus requires either an extended gaseous envelope, a large
volatile-rich layer, or a rocky portion that is not dominated by iron and
silicates to explain its mass and radius. The discovery that the bulk
composition of TOI-1634 b is inconsistent with that of the Earth favors the
gas-depleted formation mechanism to explain the emergence of the radius valley
around M dwarfs with
Multidimensional characterization of global food supply from 1961 to 2013
Food systems are increasingly globalized and interdependent, and diets around the world are changing. Characterization of national food supplies and how they have changed can inform food policies that ensure national food security, support access to healthy diets and enhance environmental sustainability. Here we analysed data for 171 countries on the availability of 18 food groups from the United Nations Food and Agriculture Organization to identify and track multidimensional food supply patterns from 1961 to 2013. Four predominant food-group combinations were identified that explained almost 90% of the cross-country variance in food supply: animal source and sugar, vegetable, starchy root and fruit, and seafood and oilcrops. South Korea, China and Taiwan experienced the largest changes in food supply over the past five decades, with animal source foods and sugar, vegetables and seafood and oilcrops all becoming more abundant components of the food supply. In contrast, in many Western countries the supply of animal source foods and sugar declined. Meanwhile, there was remarkably little change in the food supply in countries in the sub-Saharan Africa region. These changes led to a partial global convergence in the national supply of animal source foods and sugar, and a divergence in those of vegetables and of seafood and oilcrops. Our analysis generated a novel characterization of food supply that highlights the interdependence of multiple food types in national food systems. A better understanding of how these patterns have evolved and will continue to change is needed to support the delivery of healthy and sustainable food system policies
A Major Role of the RecFOR Pathway in DNA Double-Strand-Break Repair through ESDSA in Deinococcus radiodurans
In Deinococcus radiodurans, the extreme resistance to DNA–shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a ΔrecA mutant: ΔrecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to γ-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, ΔuvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of ΔuvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA
Toi-1235 b: A keystone super-earth for testing radius valley emergence models around early m dwarfs
Small planets on close-in orbits tend to exhibit envelope mass fractions of
either effectively zero or up to a few percent depending on their size and
orbital period. Models of thermally-driven atmospheric mass loss and of
terrestrial planet formation in a gas-poor environment make distinct
predictions regarding the location of this rocky/non-rocky transition in
period-radius space. Here we present the confirmation of TOI-1235 b (
days, R), a planet whose size and
period are intermediate between the competing model predictions, thus making
the system an important test case for emergence models of the rocky/non-rocky
transition around early M dwarfs ( R,
M). We confirm the TESS planet discovery using
reconnaissance spectroscopy, ground-based photometry, high-resolution imaging,
and a set of 38 precise radial-velocities from HARPS-N and HIRES. We measure a
planet mass of M which implies an iron core
mass fraction of % in the absence of a gaseous envelope. The
bulk composition of TOI-1235 b is therefore consistent with being Earth-like
and we constrain a H/He envelope mass fraction to be % at 90% confidence.
Our results are consistent with model predictions from thermally-driven
atmospheric mass loss but not with gas-poor formation, which suggests that the
former class of processes remain efficient at sculpting close-in planets around
early M dwarfs. Our RV analysis also reveals a strong periodicity close to the
first harmonic of the photometrically-determined stellar rotation period that
we treat as stellar activity, despite other lines of evidence favoring a
planetary origin ( days,
M) that cannot be firmly ruled out by our data
The Complete Genome Sequence of the Pathogenic Intestinal Spirochete Brachyspira pilosicoli and Comparison with Other Brachyspira Genomes
Background: The anaerobic spirochete Brachyspira pilosicoli colonizes the large intestine of various species of birds and mammals, including humans. It causes ''intestinal spirochetosis'', a condition characterized by mild colitis, diarrhea and reduced growth. This study aimed to sequence and analyse the bacterial genome to investigate the genetic basis of its specialized ecology and virulence. Methodology/Principal Findings: The genome of B. pilosicoli 95/1000 was sequenced, assembled and compared with that of the pathogenic Brachyspira hyodysenteriae and a near-complete sequence of Brachyspira murdochii. The B. pilosicoli genome was circular, composed of 2,586,443 bp with a 27.9 mol% G+C content, and encoded 2,338 genes. The three Brachyspira species shared 1,087 genes and showed evidence of extensive genome rearrangements. Despite minor differences in predicted protein functional groups, the species had many similar features including core metabolic pathways. Genes distinguishing B. pilosicoli from B. hyodysenteriae included those for a previously undescribed bacteriophage that may be useful for genetic manipulation, for a glycine reductase complex allowing use of glycine whilst protecting from oxidative stress, and for aconitase and related enzymes in the incomplete TCA cycle, allowing glutamate synthesis and function of the cycle during oxidative stress. B. pilosicoli had substantially fewer methyl-accepting chemotaxis genes than B. hyodysenteriae and hence these species are likely to have different chemotactic responses that may help to explain their different host range and colonization sites. B. pilosicoli lacked the gene for a new putative hemolysin identified in B. hyodysenteriae WA1. Both B. pilosicoli and B. murdochii lacked the rfbBADC gene cluster found on the B. hyodysenteriae plasmid, and hence were predicted to have different lipooligosaccharide structures. Overall, B. pilosicoli 95/1000 had a variety of genes potentially contributing to virulence. Conclusions/Significance: The availability of the complete genome sequence of B. pilosicoli 95/1000 will facilitate functional genomics studies aimed at elucidating host-pathogen interactions and virulence
High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison
The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO2, reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change
Where Are All the Mycobacterium avium Subspecies paratuberculosis in Patients with Crohn's Disease?
Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic granulomatous inflammation of the intestines, Johne's disease, in dairy cows and every other species of mammal in which it has been identified. MAP has been identified in the mucosal layer and deeper bowel wall in patients with Crohn's disease by methods other than light microscopy, and by direct visualization in small numbers by light microscopy. MAP has not been accepted as the cause of Crohn's disease in part because it has not been seen under the microscope in large numbers in the intestines of patients with Crohn's disease. An analysis of the literature on the pathology of Crohn's disease and on possible MAP infection in Crohn's patients suggests that MAP might directly infect endothelial cells and adipocytes and cause them to proliferate, causing focal obstruction within already existing vessels (including granuloma formation), the development of new vessels (neoangiogenesis and lymphangiogenesis), and the “creeping fat” of the mesentery that is unique in human pathology to Crohn's disease but also occurs in bovine Johne's disease. Large numbers of MAP might therefore be found in the mesentery attached to segments of intestine affected by Crohn's disease rather than in the bowel wall, the blood and lymphatic vessels running through the mesentery, or the mesenteric fat itself. The walls of fistulas might result from the neoangiogenesis or lymphangiogenesis that occurs in the bowel wall in Crohn's disease and therefore are also possible sites of large numbers of MAP. The direct visualization of large numbers of MAP organisms in the tissues of patients with Crohn's disease will help establish that MAP causes Crohn's disease
- …
