23 research outputs found

    Finite deformation elasticity theory

    No full text
    This chapter provides the framework for the development of constitutive theories of solids by focusing on constitutive laws for nonlinearly elastic solids. These exemplify the general principles of constitutive theory that should be applied to all types of material behaviour, in particular, the notions of objectivity and material symmetry, including the important symmetries of isotropy, transverse isotropy and orthotropy based in part on deformation invariants. Details are given for the various general stress–deformation relations for each case of symmetry in respect of hyperelastic materials (which are characterized by a strain-energy function), with or without an internal constraint such as incompressibility, and these are illustrated by particular prototype models. The notion of residual stress (in an unloaded configuration) is discussed and the form of strain-energy function required to accommodate residual stress in the material response is developed

    On dynamic boundary conditions within the linear Steigmann-Ogden model of surface elasticity and strain gradient elasticity

    No full text
    Within the strain gradient elasticity we discuss the dynamic boundary conditions taking into account surface stresses described by the Steigmann–Ogden model. The variational approach is applied with the use of the least action functional. The functional is represented as a sum of surface and volume integrals. The surface strain and kinetic energy densities are introduced. The Toupin–Mindlin formulation of the strain gradient elasticity is considered. As a result, we derived the motion equations and the natural boundary conditions which include inertia terms
    corecore