8 research outputs found
Magnetic configuration effects on the Wendelstein 7-X stellarator
The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τE > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures
Deuterium and tritium experiments on TFTR
Three campaigns, prior to July 1994, attempted to increase the fusion power in DT plasmas on the Tokamak Fusion Test Reactor (TFTR). The first campaign was dedicated to obtaining >5 MW of fusion power while avoiding MHD events similar to the JET X-event. The second was aimed at producing maximum fusion power irrespective of proximity to MHD limits, and achieved 9 MW limited by a disruption. The third campaign increased the energy confinement time using lithium pellet conditioning while raising the ratio of alpha heating to beam heating
Recommended from our members
Deuterium and tritium experiments on TFTR
Three campaigns, prior to July 1994, attempted to increase the fusion power in DT plasmas on the Tokamak Fusion Test Reactor (TFTR). The first campaign was dedicated to obtaining >5 MW of fusion power while avoiding MHD events similar to the JET X-event. The second was aimed at producing maximum fusion power irrespective of proximity to MHD limits, and achieved 9 MW limited by a disruption. The third campaign increased the energy confinement time using lithium pellet conditioning while raising the ratio of alpha heating to beam heating
Recommended from our members
Deuterium and tritium experiments on TFTR
Three campaigns, prior to July 1994, attempted to increase the fusion power in DT plasmas on the Tokamak Fusion Test Reactor (TFTR). The first campaign was dedicated to obtaining >5 MW of fusion power while avoiding MHD events similar to the JET X-event. The second was aimed at producing maximum fusion power irrespective of proximity to MHD limits, and achieved 9 MW limited by a disruption. The third campaign increased the energy confinement time using lithium pellet conditioning while raising the ratio of alpha heating to beam heating
Progress towards high-performance, steady-state spherical torus
Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values beta(T) of up to 35% with a near unity central beta(T) have been obtained. NSTX will be exploring advanced regimes where beta(T) up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction (similar to60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fast wave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX to test the method up to I-p similar to 500 kA. In parallel, start-up using a RF current drive and only external poloidal field coils are being developed on NSTX. The area of power and particle handling is expected to be challenging because of the higher power density expected in the ST relative to that in conventional aspect-ratio tokamaks. Due to its promise for power and particle handling, liquid lithium is being studied in CDX-U as a potential plasma-facing surface for a fusion reactor.This research was supported by DoE contract DE-AC02-76CH03073 and DoE Grant
DE-FG02-96ER54375
