4,479 research outputs found
Transversalidad de discapacidad lineamientos 2006
El Concepto de discapacidad se relaciona con la capacidad de las personas para
la realización de sus actividades de la vida diaria y en la forma como interactúan
con su propio entorno para la realización de las mismas. Se pasa de una
visión eminentemente médica a una visión social. Por ejemplo, la Organización
Panamericana de la Salud en el 2001, señala que la participación restringida de
las personas con discapacidad en las actividades educativas, laborales y sociales
ya no se considera como el resultado de sus limitaciones sino como producto de
las barreras sociales, es decir de la relación de las personas con el entorno
Microbial Succession in the Gut: Directional Trends of Taxonomic and Functional Change in a Birth Cohort of Spanish Infants
In spite of its major impact on life-long health, the process of microbial succession in the gut of infants remains poorly understood. Here, we analyze the patterns of taxonomic and functional change in the gut microbiota during the first year of life for a birth cohort of 13 infants. We detect that individual instances of gut colonization vary in the temporal dynamics of microbiota richness, diversity, and composition at both functional and taxonomic levels. Nevertheless, trends discernible in a majority of infants indicate that gut colonization occurs in two distinct phases of succession, separated by the introduction of solid foods to the diet. This change in resource availability causes a sharp decrease in the taxonomic richness of the microbiota due to the loss of rare taxa (p = 2.06e-9), although the number of core genera shared by all infants increases substantially. Moreover, although the gut microbial succession is not strictly deterministic, we detect an overarching directionality of change through time towards the taxonomic and functional composition of the maternal microbiota. Succession is however not complete by the one year mark, as significant differences remain between one-year-olds and their mothers in terms of taxonomic (p = 0.009) and functional (p = 0.004) microbiota composition, and in taxonomic richness (p = 2.76e-37) and diversity (p = 0.016). Our results also indicate that the taxonomic composition of the microbiota shapes its functional capacities. Therefore, the observed inter-individual variability in taxonomic composition during succession is not fully compensated by functional equivalence among bacterial genera and may have important physiological consequences. Finally, network analyses suggest that positive interactions among core genera during community assembly contribute to ensure their permanence within the gut, and highlight an expansion of complexity in the interactions network as the core of taxa shared by all infants grows following the introduction of solid foods
Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles
Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particle
Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira)
Pleurodires or side-necked turtles are today restricted to freshwater environments of South America, Africa– Madagascar and Australia, but in the past they were distributed much more broadly, being found also on Eurasia, India and North America, and marine environments. Two hypotheses were proposed to explain this distribution; in the first, vicariance would have shaped the current geographical distribution and, in the second, extinctions constrained a previously widespread distribution. Here, we aim to reconstruct pleurodiran biogeographic history and diversification patterns based on a new phylogenetic hypothesis recovered from the analysis of the largest morphological dataset yet compiled for the lineage, testing which biogeographical process prevailed during its evolutionary history. The resulting topology generally agrees with previous hypotheses of the group and shows that most diversification shifts were related to the exploration of new niches, e.g. littoral or marine radiations. In addition, as other turtles, pleurodires do not seem to have been much affected by either the Cretaceous– Palaeogene or the Eocene–Oligocene mass extinctions. The biogeographic analyses highlight the predominance of both anagenetic and cladogenetic dispersal events and support the importance of transoceanic dispersals as a more common driver of area changes than previously thought, agreeing with previous studies with other non-turtle lineages.Fil: Ferreira, Gabriel S.. Universidade de Sao Paulo; Brasil. Senckenberg Centre For Human Evolution And Palaeoenvironment; Alemania. Universität Tübingen; AlemaniaFil: Bronzati Filho, Mario. Bayerische Staatssammlung für Paläontologie und Geologie; AlemaniaFil: Langer, Max C.. Universidade de Sao Paulo; BrasilFil: Sterli, Juliana. Museo Paleontológico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Rule reactivation and capture errors in goal directed behaviour
In everyday life people may act automatically, following "unwanted" lines of action which are triggered by contextual cues and may interfere with current goals. Such occurrences are known as "capture errors" in reference to errors that occur when a more salient behaviour takes place when a similar, but less salient, action was intended. Clinical neuropsychological studies suggest that reactivation of previous rules may play an important role in behavioural interference, but such reactivation has been little studied in normal subjects and simple experimental tasks. In the present study we develop this theme, presenting data on 4 subjects who spontaneously showed capture errors in verbal fluency tasks, and developing a new experimental paradigm specifically designed to elicit such interference in normal subjects. In the new paradigm, 101 normal subjects performed a simple series of working memory tasks, including occasional stimuli whose answer matched both the current and the previous rule. We found that normal controls indeed tend to commit more mistakes after the presentation of a stimulus whose answer is consistent with a current and preceding rule. In this case, however, the errors produced are not necessarily associated with a shift back to the old rule, suggesting that rule reactivation leads to a more general interference effect. We discuss the importance of our data from both theoretical and clinical perspectives
Honey bee foraging distance depends on month and forage type
To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other
Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter
Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients
Distinguishing Asthma Phenotypes Using Machine Learning Approaches.
Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies
Use of the Meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes
The search for new natural products is leading to the isolation of novel actinomycete species, many of which will ultimately require genetic analysis. Some of these isolates will likely exhibit low intrinsic frequencies of homologous recombination and fail to sporulate under laboratory conditions, exacerbating the construction of targeted gene deletions and replacements in genetically uncharacterised strains. To facilitate the genetic manipulation of such species, we have developed an efficient method to generate gene or gene cluster deletions in actinomycetes by homologous recombination that does not introduce any other changes to the targeted organism's genome. We have synthesised a codon optimised I-SceI gene for expression in actinomycetes that results in the production of the yeast I-SceI homing endonuclease which produces double strand breaks at a unique introduced 18 base pair recognition sequence. Only those genomes that undergo homologous recombination survive, providing a powerful selection for recombinants, approximately half of which possess the desired mutant genotype. To demonstrate the efficacy and efficiency of the system, we deleted part of the gene cluster for the red-pigmented undecylprodiginine complex of compounds in Streptomyces coelicolor M1141. We believe that the system we have developed will be broadly applicable across a wide range of actinomycetes
Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus
Coastal lagoons are semi-isolated ecosystems
exposed to wide fluctuations of environmental conditions
and showing habitat fragmentation. These features may
play an important role in separating species into different
populations, even at small spatial scales. In this study, we
evaluate the concordance between mitochondrial (previous
published data) and nuclear data analyzing the genetic
variability of Pomatoschistus marmoratus in five localities,
inside and outside the Mar Menor coastal lagoon (SE
Spain) using eight microsatellites. High genetic diversity
and similar levels of allele richness were observed across
all loci and localities, although significant genic and
genotypic differentiation was found between populations
inside and outside the lagoon. In contrast to the FST values
obtained from previous mitochondrial DNA analyses
(control region), the microsatellite data exhibited significant
differentiation among samples inside the Mar Menor
and between lagoonal and marine samples. This pattern
was corroborated using Cavalli-Sforza genetic distances.
The habitat fragmentation inside the coastal lagoon and
among lagoon and marine localities could be acting as a
barrier to gene flow and contributing to the observed
genetic structure. Our results from generalized additive
models point a significant link between extreme lagoonal
environmental conditions (mainly maximum salinity) and
P. marmoratus genetic composition. Thereby, these environmental
features could be also acting on genetic structure
of coastal lagoon populations of P. marmoratus favoring
their genetic divergence. The mating strategy of P. marmoratus
could be also influencing our results obtained from
mitochondrial and nuclear DNA. Therefore, a special
consideration must be done in the selection of the DNA
markers depending on the reproductive strategy of the
species
- …
