5,074 research outputs found
Structural load challenges during space shuttle development
The challenges that resulted from the unique configuration of the space shuttle and capabilities developed to meet these challenges are described. The methods and the organization that were developed to perform dynamic loads analyses on the space shuttle configuration and to assess dynamic data developed after design are discussed. Examples are presented from the dynamic loads analysis of the lift-off and maximum dynamic pressure portion of ascent. Also shown are orbital flight test results, for which selected predicted responses are compared to measured data for the lift-off and high-dynamic-pressure times of ascent. These results have generally verified the design analysis. However, subscale testing was found to be deficient in predicting full-scale results in two areas: the ignition overpressure at lift-off and the aerodynamics/plume interactions at high-q boost. In these areas, the results of the flight test program were accommodated with no impact to the vehicle design
Hot Quark Matter with an Axial Chemical Potential
We analyze the phase diagram of hot quark matter in presence of an axial
chemical potential, . The latter is introduced to mimic the chirality
transitions induced, in hot Quantum Chromodynamics, by the strong sphaleron
configurations. In particular, we study the curvature of the critical line at
small , the effects of a finite quark mass and of a vector interaction.
Moreover, we build the mixed phase at the first order phase transition line,
and draw the phase diagram in the chiral density and temperature plane. We
finally compute the full topological susceptibility in presence of a background
of topological charge.Comment: 12 pages, 7 figures. Few references added, short discussion included.
Final version appearing on Phys. Rev.
The SILCC (SImulating the LifeCycle of molecular Clouds) project: I. Chemical evolution of the supernova-driven ISM
The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a
more self-consistent understanding of the interstellar medium (ISM) on small
scales and its link to galaxy evolution. We simulate the evolution of the
multi-phase ISM in a 500 pc x 500 pc x 10 kpc region of a galactic disc, with a
gas surface density of .
The Flash 4.1 simulations include an external potential, self-gravity, magnetic
fields, heating and radiative cooling, time-dependent chemistry of H and CO
considering (self-) shielding, and supernova (SN) feedback. We explore SN
explosions at different (fixed) rates in high-density regions (peak), in random
locations (random), in a combination of both (mixed), or clustered in space and
time (clustered). Only random or clustered models with self-gravity (which
evolve similarly) are in agreement with observations. Molecular hydrogen forms
in dense filaments and clumps and contributes 20% - 40% to the total mass,
whereas most of the mass (55% - 75%) is in atomic hydrogen. The ionised gas
contributes <10%. For high SN rates (0.5 dex above Kennicutt-Schmidt) as well
as for peak and mixed driving the formation of H is strongly suppressed.
Also without self-gravity the H fraction is significantly lower (
5%). Most of the volume is filled with hot gas (90% within 2 kpc).
Only for random or clustered driving, a vertically expanding warm component of
atomic hydrogen indicates a fountain flow. Magnetic fields have little impact
on the final disc structure. However, they affect dense gas () and delay H formation. We highlight that individual chemical
species, in particular atomic hydrogen, populate different ISM phases and
cannot be accurately accounted for by simple temperature-/density-based phase
cut-offs.Comment: 30 pages, 23 figures, submitted to MNRAS. Comments welcome! For
movies of the simulations and download of selected Flash data see the SILCC
website: http://www.astro.uni-koeln.de/silc
Structural basis for recruitment of mitochondrial fission complexes by Fis1
Mitochondrial fission controls mitochondrial shape and physiology, including mitochondrial remodeling in apoptosis. During assembly of the yeast mitochondrial fission complex, the outer membrane protein Fis1 recruits the dynamin-related GTPase Dnm1 to mitochondria. Fis1 contains a tetratricopeptide repeat (TPR) domain and interacts with Dnm1 via the molecular adaptors Mdv1 and Caf4. By using crystallographic analysis of adaptor-Fis1 complexes, we show that these adaptors use two helices to bind to both the concave and convex surfaces of the Fis1 TPR domain. Fis1 therefore contains two interaction interfaces, a binding mode that, to our knowledge, has not been observed previously for TPR domains. Genetic and biochemical studies indicate that both binding interfaces are important for binding of Mdv1 and Caf4 to Fis1 and for mitochondrial fission activity in vivo. Our results reveal how Fis1 recruits the mitochondrial fission complex and will facilitate efforts to manipulate mitochondrial fission
The SILCC project: III. Regulation of star formation and outflows by stellar winds and supernovae
We study the impact of stellar winds and supernovae on the multi-phase
interstellar medium using three-dimensional hydrodynamical simulations carried
out with FLASH. The selected galactic disc region has a size of (500 pc) x
5 kpc and a gas surface density of 10 M/pc. The simulations
include an external stellar potential and gas self-gravity, radiative cooling
and diffuse heating, sink particles representing star clusters, stellar winds
from these clusters which combine the winds from indi- vidual massive stars by
following their evolution tracks, and subsequent supernova explosions. Dust and
gas (self-)shielding is followed to compute the chemical state of the gas with
a chemical network. We find that stellar winds can regulate star (cluster)
formation. Since the winds suppress the accretion of fresh gas soon after the
cluster has formed, they lead to clusters which have lower average masses
(10 - 10 M) and form on shorter timescales (10 -
10 Myr). In particular we find an anti-correlation of cluster mass and
accretion time scale. Without winds the star clusters easily grow to larger
masses for ~5 Myr until the first supernova explodes. Overall the most massive
stars provide the most wind energy input, while objects beginning their
evolution as B-type stars contribute most of the supernova energy input. A
significant outflow from the disk (mass loading 1 at 1 kpc) can be
launched by thermal gas pressure if more than 50% of the volume near the disc
mid-plane can be heated to T > 3x10 K. Stellar winds alone cannot create a
hot volume-filling phase. The models which are in best agreement with observed
star formation rates drive either no outflows or weak outflows.Comment: 23 pages; submitted to MNRA
The Lightest Pseudo-Goldstone Boson at Future e+e- Colliders
In a class of models of dynamical symmetry breaking not ruled out by the
available data, the lightest neutral pseudo-Nambu-Goldstone boson P0 contains
only down-type techniquarks and charged technileptons. Its mass scale is
naturally determined by the b-quark and therefore it is likely to be light. As
the presence of pseudo-Nambu-Goldstone bosons in models of dynamical symmetry
breaking is a quite general feature, the search of the P0 at colliders is an
interesting opportunity of putting limits on or discovering a dynamical
electroweak symmetry breaking scenario. In this note we discuss the prospects
for discovering and studying the P0 at future e+e- and gamma-gamma colliders.Comment: 15 pages, 8 figures, LaTeX (epsfig), Proceedings of the Second
ECFA/DESY Study on Physics Studies for a Future Linear Collide
Arctic and subarctic environmental analyses utilizing ERTS-1 imagery
The author has identified the following significant results. ERTS-1 imagery provides a means of distinguishing and monitoring estuarine surface water circulation patterns and changes in the relative sediment load of discharging rivers on a regional basis. Physical boundaries mapped from ERTS-1 imagery in combination with ground truth obtained from existing small scale maps and other sources resulted in improved and more detailed maps of permafrost terrain and vegetation for the same area. Snowpack cover within a research watershed has been analyzed and compared to ground data. Large river icings along the proposed Alaska pipeline route from Prudhoe Bay to the Brooks Range have been monitored. Sea ice deformation and drift northeast of Point Barrow, Alaska have been measured during a four day period in March and shore-fast ice accumulation and ablation along the west coast of Alaska have been mapped for the spring and early summer seasons
Mechanisms of HIV-1 Nucleocapsid Protein Inhibition by Lysyl-Peptidyl-Anthraquinone Conjugates
The Nucleocapsid protein NCp7 (NC) is a nucleic acid chaperone responsible for essential steps of the HIV-1 life cycle and an attractive candidate for drug development. NC destabilizes nucleic acid structures and promotes the formation of annealed substrates for HIV-1 reverse transcription elongation. Short helical nucleic acid segments bordered by bulges and loops, such as the Trans-Activation Response element (TAR) of HIV-1 and its complementary sequence (cTAR), are nucleation elements for helix destabilization by NC and also preferred recognition sites for threading intercalators. Inspired by these observations, we have recently demonstrated that 2,6-disubstituted peptidylanthraquinone-conjugates inhibit the chaperone activities of recombinant NC in vitro, and that inhibition correlates with the stabilization of TAR and cTAR stem-loop structures. We describe here enhanced NC inhibitory activity by novel conjugates that exhibit longer peptidyl chains ending with a conserved Nterminal lysine. Their efficient inhibition of TAR/cTAR annealing mediated by NC originates from the combination of at least three different mechanisms, namely, their stabilizing effects on nucleic acids dynamics by threading intercalation, their ability to target TAR RNA substrate leading to a direct competition with the protein for the same binding sites on TAR, and, finally, their effective binding to the NC protein. Our results suggest that these molecules may represent the stepping-stone for the future development of NC-inhibitors capable of targeting the protein itself and its recognition site in RNA
Land use/vegetation mapping in reservoir management. Merrimack River basin
This report consists of an analysis of: ERTS-1 Multispectral Scanner imagery obtained 10 August 1973; Skylab 3 S190A and S190B photography, track 29, taken 21 September 1973; and RB-57 high-altitude aircraft photography acquired 26 September 1973. These data products were acquired on three cloud-free days within a 47-day period. The objectives of this study were: (1) to make quantitative comparisons between high-altitude aircraft photography and satellite imagery, and (2) to demonstrate the extent to which high resolution (S190A and B) space-acquired data can be used for land use/vegetation mapping and management of drainage basins
- …
