4,620 research outputs found
Hot Quark Matter with an Axial Chemical Potential
We analyze the phase diagram of hot quark matter in presence of an axial
chemical potential, . The latter is introduced to mimic the chirality
transitions induced, in hot Quantum Chromodynamics, by the strong sphaleron
configurations. In particular, we study the curvature of the critical line at
small , the effects of a finite quark mass and of a vector interaction.
Moreover, we build the mixed phase at the first order phase transition line,
and draw the phase diagram in the chiral density and temperature plane. We
finally compute the full topological susceptibility in presence of a background
of topological charge.Comment: 12 pages, 7 figures. Few references added, short discussion included.
Final version appearing on Phys. Rev.
Native NIR-emitting single colour centres in CVD diamond
Single-photon sources are a fundamental element for developing quantum
technologies, and sources based on colour centres in diamonds are among the
most promising candidates. The well-known NV centres are characterized by
several limitations, thus few other defects have recently been considered. In
the present work, we characterize in detail native efficient single colour
centres emitting in the near infra-red in both standard IIa single-crystal and
electronic-grade polycrystalline commercial CVD diamond samples. In the former
case, a high-temperature annealing process in vacuum is necessary to induce the
formation/activation of luminescent centres with good emission properties,
while in the latter case the annealing process has marginal beneficial effects
on the number and performances of native centres in commercially available
samples. Although displaying significant variability in several photo physical
properties (emission wavelength, emission rate instabilities, saturation
behaviours), these centres generally display appealing photophysical properties
for applications as single photon sources: short lifetimes, high emission rates
and strongly polarized light. The native centres are tentatively attributed to
impurities incorporated in the diamond crystal during the CVD growth of
high-quality type IIa samples, and offer promising perspectives in
diamond-based photonics.Comment: 27 pages, 10 figures. Submitted to "New Journal of Phsyics",
NJP-100003.R
Electromagnetic analysis and performance comparison of fully 3D-printed antennas
In this work, the possibility of directly prototyping antennas by exploiting additive manufacturing 3D-printing technology is investigated. In particular, the availability of printable filaments with interesting conductive properties allows for printing of even the antenna conductive elements. Three samples of a 2.45 GHz microstrip patch antenna have been 3D-printed by using different approaches and materials, and their performance evaluated and compared. In particular, the same dielectric substrate printed in polylactic acid (PLA) has been adopted in all cases, whilst copper tape and two different conductive filaments have been used to realize the conductive parts of the three antenna samples, respectively. Even if an expected radiation efficiency reduction has been observed for the conductive filament case, the comparative analysis clearly demonstrates that 3D-printing technology can be exploited to design working fully-printed antennas, including the conductive parts
Aircraft control via variable cant-angle winglets
Copyright @ 2008 American Institute of Aeronautics and AstronauticsThis paper investigates a novel method for the control of "morphing" aircraft. The concept consists of a pair of winglets; with adjustable cant angle, independently actuated and mounted at the tips of a baseline flying wing. The general philosophy behind the concept was that for specific flight conditions such as a coordinated turn, the use of two control devices would be sufficient for adequate control. Computations with a vortex lattice model and subsequent wind-tunnel tests demonstrate the viability of the concept, with individual and/or dual winglet deflection producing multi-axis coupled control moments. Comparisons between the experimental and computational results showed reasonable to good agreement, with the major discrepancies thought to be due to wind-tunnel model aeroelastic effects.This work has been supported by a Marie Curie excellence research grant funded by the European Commission
The SILCC (SImulating the LifeCycle of molecular Clouds) project: I. Chemical evolution of the supernova-driven ISM
The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a
more self-consistent understanding of the interstellar medium (ISM) on small
scales and its link to galaxy evolution. We simulate the evolution of the
multi-phase ISM in a 500 pc x 500 pc x 10 kpc region of a galactic disc, with a
gas surface density of .
The Flash 4.1 simulations include an external potential, self-gravity, magnetic
fields, heating and radiative cooling, time-dependent chemistry of H and CO
considering (self-) shielding, and supernova (SN) feedback. We explore SN
explosions at different (fixed) rates in high-density regions (peak), in random
locations (random), in a combination of both (mixed), or clustered in space and
time (clustered). Only random or clustered models with self-gravity (which
evolve similarly) are in agreement with observations. Molecular hydrogen forms
in dense filaments and clumps and contributes 20% - 40% to the total mass,
whereas most of the mass (55% - 75%) is in atomic hydrogen. The ionised gas
contributes <10%. For high SN rates (0.5 dex above Kennicutt-Schmidt) as well
as for peak and mixed driving the formation of H is strongly suppressed.
Also without self-gravity the H fraction is significantly lower (
5%). Most of the volume is filled with hot gas (90% within 2 kpc).
Only for random or clustered driving, a vertically expanding warm component of
atomic hydrogen indicates a fountain flow. Magnetic fields have little impact
on the final disc structure. However, they affect dense gas () and delay H formation. We highlight that individual chemical
species, in particular atomic hydrogen, populate different ISM phases and
cannot be accurately accounted for by simple temperature-/density-based phase
cut-offs.Comment: 30 pages, 23 figures, submitted to MNRAS. Comments welcome! For
movies of the simulations and download of selected Flash data see the SILCC
website: http://www.astro.uni-koeln.de/silc
Identification de métabolites secondaires anti-oxydants et anti-AGEs à partir d’un extrait DCM d’écorce de Mammea neurophylla (Schltr.) Kosterm par criblage bioguidé
Dressed Polyakov loop and phase diagram of hot quark matter under magnetic field
We evaluate the dressed Polyakov loop for hot quark matter in strong magnetic
field. To compute the finite temperature effective potential, we use the
Polyakov extended Nambu-Jona Lasinio model with eight-quark interactions taken
into account. The bare quark mass is adjusted in order to reproduce the
physical value of the vacuum pion mass. Our results show that the dressed
Polyakov loop is very sensitive to the strenght of the magnetic field, and it
is capable to capture both the deconfinement crossover and the chiral
crossover. Besides, we compute self-consistently the phase diagram of the
model. We find a tiny split of the two aforementioned crossovers as the
strength of the magnetic field is increased. Concretely, for the largest value
of magnetic field investigated here, , the split is of the order
of . A qualitative comparison with other effective models and recent
Lattice results is also performed.Comment: 10 pages, 3 figures, RevTeX4-1 styl
- …
