9 research outputs found
Extraordinary lifespans in ants: a test of evolutionary theories of ageing
Senescence presents not only a medical problem, but also an evolutionary paradox because it should be opposed by natural selection. Evolutionary hypotheses propose that ageing evolves as the necessary cost of processes increasing early reproductive success(1,2), or because of weaker selection against late-acting mutations(3). A prediction of these hypotheses is that the rate of ageing should increase and the average lifespan decrease as the rate of extrinsic mortality increases(1-7). Alternatively, non-adaptive, purely mechanistic hypotheses invoke damage to DNA, cells, tissues and organs as being the unique cause of senescence and ineluctable death of organisms(8). Here we show that the evolution of eusociality is associated with a 100-fold increase in insect lifespan. Such an increase is predicted by evolutionary theories because termite, bee and ant queens live in colonies that are sheltered and heavily defended against predators. Moreover, a comparison of ants with contrasting life histories also reveals an association between lifespan and extrinsic rate of mortality. These results provide strong support for evolutionary theories of ageing, as purely mechanistic hypotheses of senescence do not propose any association between the rate of extrinsic mortality and lifespans
An Estimation of Erinaceidae Phylogeny: A Combined Analysis Approach
BACKGROUND: Erinaceidae is a family of small mammals that include the spiny hedgehogs (Erinaceinae) and the silky-furred moonrats and gymnures (Galericinae). These animals are widely distributed across Eurasia and Africa, from the tundra to the tropics and the deserts to damp forests. The importance of these animals lies in the fact that they are the oldest known living placental mammals, which are well represented in the fossil record, a rarity fact given their size and vulnerability to destruction during fossilization. Although the Family has been well studied, their phylogenetic relationships remain controversial. To test previous phylogenetic hypotheses, we combined molecular and morphological data sets, including representatives of all the genera. METHODOLOGY AND PRINCIPAL FINDINGS: We included in the analyses 3,218 bp mitochondrial genes, one hundred and thirty-five morphological characters, twenty-two extant erinaceid taxa, and five outgroup taxa. Phylogenetic relationships were reconstructed using both partitioned and combined data sets. As in previous analyses, our results strongly support the monophyly of both subfamilies (Galericinae and Erinaceinae), the Hylomys group (to include Neotetracus and Neohylomys), and a sister-relationship of Atelerix and Erinaceus. As well, we verified that the extremely long branch lengths within the Galericinae are consistent with their fossil records. Not surprisingly, we found significant incongruence between the phylogenetic signals of the genes and the morphological characters, specifically in the case of Hylomys parvus, Mesechinus, and relationships between Hemiechinus and Paraechinus. CONCLUSIONS: Although we discovered new clues to understanding the evolutionary relationships within the Erinaceidae, our results nonetheless, strongly suggest that more robust analyses employing more complete taxon sampling (to include fossils) and multiple unlinked genes would greatly enhance our understanding of the Erinaceidae. Until then, we have left the nomenclature of the taxa unchanged; hence it does not yet precisely reflect their phylogenetic relationships or the depth of their genetic diversity
FHY1 Mediates Nuclear Import of the Light-Activated Phytochrome A Photoreceptor
The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway
An improved embryo-rescue protocol for hybrid progeny from seedless Vitis vinifera grapes × wild Chinese Vitis species
mTORC1/autophagy-regulated MerTK in mutant BRAFV600 melanoma with acquired resistance to BRAF inhibition
BRAF inhibitors (BRAFi) and the combination therapy of BRAF and MEK inhibitors (MEKi) were recently approved for therapy of metastatic melanomas harbouring the oncogenic BRAFV600 mutation. Although these therapies have shown pronounced therapeutic efficacy, the limited durability of the response indicates an acquired drug resistance that still remains mechanistically poorly understood at the molecular level. We conducted transcriptome gene profiling in BRAFi-treated melanoma cells and identified that Mer tyrosine kinase (MerTK) is specifically upregulated. MerTK overexpression was demonstrated not only in melanomas resistant to BRAFi monotherapy (5 out of 10 samples from melanoma patients) but also in melanoma resistant to BRAFi+MEKi (1 out of 3), although MEKi alone does not affect MerTK. Mechanistically, BRAFi-induced activation of Zeb2 stimulates MerTK in BRAFV600 melanoma through mTORC1-triggered activation of autophagy. Co-targeting MerTK and BRAFV600 significantly reduced tumour burden in xenografted mice, which was pheno-copied by co-inhibition of autophagy and mutant BRAFV600
