543 research outputs found

    The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration

    Get PDF
    Macrophages are crucial for tissue homeostasis. Based on their activation, they might display classical/M1 or alternative/M2 phenotypes. M1 macrophages produce pro-inflammatory cytokines, reactive oxygen species (ROS), and nitric oxide (NO). M2 macrophages upregulate arginase-1 and reduce NO and ROS levels; they also release anti-inflammatory cytokines, growth factors, and polyamines, thus promoting angiogenesis and tissue healing. Moreover, M1 and M2 display key metabolic differences; M1 polarization is characterized by an enhancement in glycolysis and in the pentose phosphate pathway (PPP) along with a decreased oxidative phosphorylation (OxPhos), whereas M2 are characterized by an efficient OxPhos and reduced PPP. Recent Advances: The glutamine-related metabolism has been discovered as crucial for M2 polarization. Vice versa, flux discontinuities in the Krebs cycle are considered additional M1 features; they lead to increased levels of immunoresponsive gene 1 and itaconic acid, to isocitrate dehydrogenase 1-downregulation and to succinate, citrate, and isocitrate over-expression

    Leg disorders in broiler chickens : prevalence, risk factors and prevention

    Get PDF
    Broiler (meat) chickens have been subjected to intense genetic selection. In the past 50 years, broiler growth rates have increased by over 300% (from 25 g per day to 100 g per day). There is growing societal concern that many broiler chickens have impaired locomotion or are even unable to walk. Here we present the results of a comprehensive survey of commercial flocks which quantifies the risk factors for poor locomotion in broiler chickens.We assessed the walking ability of 51,000 birds, representing 4.8 million birds within 176 flocks.We also obtained information on approximately 150 different management factors associated with each flock. At a mean age of 40 days, over 27.6% of birds in our study showed poor locomotion and 3.3% were almost unable to walk. The high prevalence of poor locomotion occurred despite culling policies designed to remove severely lame birds from flocks. We show that the primary risk factors associated with impaired locomotion and poor leg health are those specifically associated with rate of growth. Factors significantly associated with high gait score included the age of the bird (older birds), visit (second visit to same flock), bird genotype, not feeding whole wheat, a shorter dark period during the day, higher stocking density at the time of assessment, no use of antibiotic, and the use of intact feed pellets. The welfare implications are profound. Worldwide approximately 261010 broilers are reared within similar husbandry systems.We identify a range of management factors that could be altered to reduce leg health problems, but implementation of these changes would be likely to reduce growth rate and production. A debate on the sustainability of current practice in the production of this important food source is required

    Ovine pedomics : the first study of the ovine foot 16S rRNA-based microbiome

    Get PDF
    We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H), interdigital dermatitis (ID) or virulent footrot (VFR). The ovine interdigital skin bacterial community varied significantly by flock and clinical condition. The diversity and richness of operational taxonomic units was greater in tissue from sheep with ID than H or VFR affected sheep. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the most abundant phyla comprising 25 genera. Peptostreptococcus, Corynebacterium and Staphylococcus were associated with H, ID and VFR respectively. Sequences of Dichelobacter nodosus, the causal agent of ovine footrot, were not amplified due to mismatches in the 16S rRNA universal forward primer (27F). A specific real time PCR assay was used to demonstrate the presence of D. nodosus which was detected in all samples including the flock with no signs of ID or VFR. Sheep with ID had significantly higher numbers of D. nodosus (104-109 cells/g tissue) than those with H or VFR feet

    Gauge-independent MS\overline{MS} renormalization in the 2HDM

    Get PDF
    We present a consistent renormalization scheme for the CP-conserving Two-Higgs-Doublet Model based on MS\overline{MS} renormalization of the mixing angles and the soft-Z2Z_2-symmetry-breaking scale MsbM_{sb} in the Higgs sector. This scheme requires to treat tadpoles fully consistently in all steps of the calculation in order to provide gauge-independent SS-matrix elements. We show how bare physical parameters have to be defined and verify the gauge independence of physical quantities by explicit calculations in a general RξR_{\xi}-gauge. The procedure is straightforward and applicable to other models with extended Higgs sectors. In contrast to the proposed scheme, the MS\overline{MS} renormalization of the mixing angles combined with popular on-shell renormalization schemes gives rise to gauge-dependent results already at the one-loop level. We present explicit results for electroweak NLO corrections to selected processes in the appropriately renormalized Two-Higgs-Doublet Model and in particular discuss their scale dependence.Comment: 52 pages, PDFLaTeX, PDF figures, JHEP version with Eq. (5.23) correcte

    Polyfunctional T cell responses in children in early stages of chronic Trypanosoma cruzi infection contrast with monofunctional responses of long-term infected adults

    Get PDF
    Background: Adults with chronic Trypanosoma cruzi exhibit a poorly functional T cell compartment, characterized by monofunctional (IFN-γ-only secreting) parasite-specific T cells and increased levels of terminally differentiated T cells. It is possible that persistent infection and/or sustained exposure to parasites antigens may lead to a progressive loss of function of the immune T cells. Methodology/Principal Findings: To test this hypothesis, the quality and magnitude of T. cruzi-specific T cell responses were evaluated in T. cruzi-infected children and compared with long-term T. cruzi-infected adults with no evidence of heart failure. The phenotype of CD4+ T cells was also assessed in T. cruzi-infected children and uninfected controls. Simultaneous secretion of IFN-γ and IL-2 measured by ELISPOT assays in response to T. cruzi antigens was prevalent among T. cruzi-infected children. Flow cytometric analysis of co-expression profiles of CD4+ T cells with the ability to produce IFN-γ, TNF-α, or to express the co-stimulatory molecule CD154 in response to T. cruzi showed polyfunctional T cell responses in most T. cruzi-infected children. Monofunctional T cell responses and an absence of CD4+TNF-α+-secreting T cells were observed in T. cruzi-infected adults. A relatively high degree of activation and differentiation of CD4+ T cells was evident in T. cruzi-infected children. Conclusions/Significance: Our observations are compatible with our initial hypothesis that persistent T. cruzi infection promotes eventual exhaustion of immune system, which might contribute to disease progression in long-term infected subjects.Fil: Albareda, María Cecilia. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: de Rissio, Ana María. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; ArgentinaFil: Tomas, Gonzalo. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; ArgentinaFil: Serjan, Alicia. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Juan A. Fernández"; ArgentinaFil: Alvarez, María Gabriela. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Viotti, Rodolfo Jorge. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Fichera, Laura Edith. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Esteva, Mónica Inés. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; ArgentinaFil: Potente, Daniel Fernando. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Armenti, Alejandro. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Tarleton, Rick L.. University of Georgia; Estados UnidosFil: Laucella, Susana Adriana. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    MICU2, a Paralog of MICU1, Resides within the Mitochondrial Uniporter Complex to Regulate Calcium Handling

    Get PDF
    Mitochondrial calcium uptake is present in nearly all vertebrate tissues and is believed to be critical in shaping calcium signaling, regulating ATP synthesis and controlling cell death. Calcium uptake occurs through a channel called the uniporter that resides in the inner mitochondrial membrane. Recently, we used comparative genomics to identify MICU1 and MCU as the key regulatory and putative pore-forming subunits of this channel, respectively. Using bioinformatics, we now report that the human genome encodes two additional paralogs of MICU1, which we call MICU2 and MICU3, each of which likely arose by gene duplication and exhibits distinct patterns of organ expression. We demonstrate that MICU1 and MICU2 are expressed in HeLa and HEK293T cells, and provide multiple lines of biochemical evidence that MCU, MICU1 and MICU2 reside within a complex and cross-stabilize each other's protein expression in a cell-type dependent manner. Using in vivo RNAi technology to silence MICU1, MICU2 or both proteins in mouse liver, we observe an additive impairment in calcium handling without adversely impacting mitochondrial respiration or membrane potential. The results identify MICU2 as a new component of the uniporter complex that may contribute to the tissue-specific regulation of this channel.National Institutes of Health (U.S.) (GM0077465)National Institutes of Health (U.S.) (DK080261

    Microglia activation in a model of retinal degeneration and TUDCA neuroprotective effects

    Get PDF
    Background: Retinitis pigmentosa is a heterogeneous group of inherited neurodegenerative retinal disorders characterized by a progressive peripheral vision loss and night vision difficulties, subsequently leading to central vision impairment. Chronic microglia activation is associated with various neurodegenerative diseases including retinitis pigmentosa. The objective of this study was to quantify microglia activation in the retina of P23H rats, an animal model of retinitis pigmentosa, and to evaluate the therapeutic effects of TUDCA (tauroursodeoxycholic acid), which has been described as a neuroprotective compound. Methods: For this study, homozygous P23H line 3 and Sprague-Dawley (SD) rats were injected weekly with TUDCA (500 mg/kg, ip) or vehicle (saline) from 20 days to 4 months old. Vertical retinal sections and whole-mount retinas were immunostained for specific markers of microglial cells (anti-CD11b, anti-Iba1 and anti-MHC-II). Microglial cell morphology was analyzed and the number of retinal microglial was quantified. Results: Microglial cells in the SD rat retinas were arranged in regular mosaics homogenously distributed within the plexiform and ganglion cell layers. In the P23H rat retina, microglial cells increased in number in all layers compared with control SD rat retinas, preserving the regular mosaic distribution. In addition, a large number of amoeboid CD11b-positive cells were observed in the P23H rat retina, even in the subretinal space. Retinas of TUDCA-treated P23H animals exhibited lower microglial cell number in all layers and absence of microglial cells in the subretinal space. Conclusions: These results report novel TUDCA anti-inflammatory actions, with potential therapeutic implications for neurodegenerative diseases, including retinitis pigmentosa.This research was supported by grants from the Spanish Ministry of Economy and Competitiveness-FEDER (BFU2012-36845), Instituto de Salud Carlos III (RETICS RD12/0034/0010), Organización Nacional de Ciegos Españoles (ONCE), FUNDALUCE, Asociación Retina Asturias and Fundación Jesús de Gangoiti

    Early predictors of impaired social functioning in male rhesus macaques (Macaca mulatta)

    Get PDF
    Autism spectrum disorder (ASD) is characterized by social cognition impairments but its basic disease mechanisms remain poorly understood. Progress has been impeded by the absence of animal models that manifest behavioral phenotypes relevant to ASD. Rhesus monkeys are an ideal model organism to address this barrier to progress. Like humans, rhesus monkeys are highly social, possess complex social cognition abilities, and exhibit pronounced individual differences in social functioning. Moreover, we have previously shown that Low-Social (LS) vs. High-Social (HS) adult male monkeys exhibit lower social motivation and poorer social skills. It is not known, however, when these social deficits first emerge. The goals of this study were to test whether juvenile LS and HS monkeys differed as infants in their ability to process social information, and whether infant social abilities predicted later social classification (i.e., LS vs. HS), in order to facilitate earlier identification of monkeys at risk for poor social outcomes. Social classification was determined for N = 25 LS and N = 25 HS male monkeys that were 1–4 years of age. As part of a colony-wide assessment, these monkeys had previously undergone, as infants, tests of face recognition memory and the ability to respond appropriately to conspecific social signals. Monkeys later identified as LS vs. HS showed impairments in recognizing familiar vs. novel faces and in the species-typical adaptive ability to gaze avert to scenes of conspecific aggression. Additionally, multivariate logistic regression using infant social ability measures perfectly predicted later social classification of all N = 50 monkeys. These findings suggest that an early capacity to process important social information may account for differences in rhesus monkeys’ motivation and competence to establish and maintain social relationships later in life. Further development of this model will facilitate identification of novel biological targets for intervention to improve social outcomes in at-risk young monkeys

    Developmental perspectives on interpersonal affective touch

    Get PDF
    In the last decade, philosophy, neuroscience and psychology alike have paid increasing attention to the study of interpersonal affective touch, which refers to the emotional and motivational facets of tactile sensation. Some aspects of affective touch have been linked to a neurophysiologically specialised system, namely the C tactile (CT) system. While the role of this sys-tem for affiliation, social bonding and communication of emotions have been widely investigated, only recently researchers have started to focus on the potential role of interpersonal affective touch in acquiring awareness of the body as our own, i.e. as belonging to our psychological ‘self’. We review and discuss recent developmental and adult findings, pointing to the central role of interpersonal affective touch in body awareness and social cognition in health and disorders. We propose that interpersonal affective touch, as an interoceptive modality invested of a social nature, can uniquely contribute to the ongoing debate in philosophy about the primacy of the relational nature of the minimal self
    corecore